
An Introduction to Unification-Based Approaches to Grammar

i

An Introduction to Unification-Based Approaches to
Grammar

Stuart M. Shieber

Microtome Publishing
Brookline, Massachusetts

c© Stuart M. Shieber 1986, 1988, 2003

Library of Congress Catalog Number [suggested]: P98.P47 2002

ISBN 0-9719997-0-4

This work is the hardbound edition of An Introduction to Unification-Based

Approaches to Grammar.

This work is covered by copyright, which restricts the uses that you may make

of the work. All rights are reserved by the copyright holder. In particular, you

may not reproduce or distribute the hardbound edition of this work without

prior written permission of the copyright holder. However, this work is also

freely available in a digital edition from www.mtome.com that may be freely

redistributed for noncommercial purposes under a license described in that

edition.

PREFACE v

Preface

These notes were originally developed as a supplement to a tutorial on

unification-based approaches to grammar presented at the 23rd Annual Meet-

ing of the Association for Computational Linguistics on 7 July, 1985 at the

University of Chicago.

My intention was to present a set of formalisms and theories from a single

organizing perspective, that of their reliance on notions of identity of complex

feature structures and on unification in the underlying algebras. Of course, as

discussed in the first chapter, such an expositional method precludes cover-

ing the formalisms from the perspective put forward by particular researchers

in the field. Fortunately, I can now recommend an introduction to the two

main linguistic theories discussed in these notes which does present their own

view in an introductory way yet with surprisingly broad coverage; Peter Sells’

Lectures on Contemporary Syntactic Theories, published in this same CSLI

Lecture Note Series, serves this purpose admirably.

Because of the brevity of the present work, and its intended (though not

completely realized) nonparochial nature, I have purposefully left out any lin-

guistic analyses from a unification-based perspective of any but the most cur-

sory sort. My reasoning here was that the vast linguistics literature in the area

provides ample examples of such analyses. (For interested readers, Chapter 5

contains references to some of this research.) A future edition, however, may

be extended with examples of analyses of control, long-distance dependencies

and various of the other canonical linguistic phenomena described using the

tools of unification-based formalisms.

Much of my thinking on these issues has been influenced by researchers at

the Center for the Study of Language and Information at Stanford University,

and especially those in the Foundations of Grammar project. CSLI is a unique

environment for research, and has done more to shape this work and the opin-

ions presented herein than any other single force. I am also indebted to Martin

Kay, Fernando Pereira, Ivan Sag, Susan Stucky, Hans Uszkoreit, Thomas Wa-

sow and Annie Zaenen for their comments on earlier drafts of these notes.

However, the views and conclusions expressed here are not necessarily shared

by them, nor are they accountable for any errors remaining.

The exposition in these notes, such as it is, was considerably improved, as

usual, by my editor at SRI, Savel Kliachko. Any unfortunate idiosyncrasies in

the text are undoubtedly lapses of the author; Savel never errs. I also extend

vi

heartfelt thanks to the CSLI editor, Dikran Karagueuzian, for his patience and

support of this work. Finally, the preparation of these notes was considerably

simplified by the efforts of Emma Pease in the formatting and indexing of the

final version.

The preparation of the published version of these notes was made possible

by a gift from the System Development Foundation.

Menlo Park, California

13 February, 1986

This second printing corrects some typographical and bibliographical errors

pointed out by readers of the first printing. Special thanks go to Geoffrey

K. Pullum for his assiduous comments on the citations.

Menlo Park, California

2 February, 1988

This reissue of “An Introduction to Unification-Based Approaches to Grammar

Formalisms” is only lightly edited from the previous 1988 printing. By now,

the content is considered quite elementary and the presentation is grossly out of

date, but it may have some remaining utility by virtue of the former property at

least. More complete and modern presentations of the formal basis for the type

of formalisms described in this book can be found in the books by Carpenter

(1992) and Johnson (1988). From a linguistic perspective, a good starting point

is the textbook by Sag and Wasow (1999).

Cambridge, Massachusetts

20 August, 2003

Contents

Preface v

Chapter 1. Introduction and History 1

Chapter 2. The Underlying Framework 3

2.1. The Role of Grammar Formalisms 3

2.2. Some Particular Design Choices 4

2.3. Coverage of the Framework 5

Chapter 3. The Simplest Unification-Based Formalism 9

3.1. Overview of the Formalism 9

3.2. The Informational Domain 10

3.3. Combinatory Rules 17

3.4. Some PATR-II Grammars 20

Chapter 4. Extended Formalisms 31

4.1. Introduction 31

4.2. Two Classes of Formalisms 31

4.3. Functional Unification Grammar 32

4.4. Definite-Clause Grammars 37

4.5. Lexical-Functional Grammar 39

4.6. Generalized Phrase Structure Grammar 42

4.7. Head Grammar and Head-Driven Phrase Structure Grammar 44

4.8. Lexical Organization 45

4.9. Other Extensions of Formalisms 53

Chapter 5. Conclusions 55

5.1. Emergent Issues Concerning Formalisms 55

5.2. A Summary 57

Appendix A. The Sample PATR-II Grammars 59

vii

viii CONTENTS

A.1. Sample Grammar One 59

A.2. Sample Grammar Two 62

A.3. Sample Grammar Three 67

A.4. Sample Grammar Four 73

Appendix B. The Literature 79

B.1. General Papers 79

B.2. Background and Overviews of the Formalisms 79

B.3. Handling Specific Linguistic Phenomena 80

B.4. Related Formalisms and Languages from Computer Science 80

B.5. Related Implementation Techniques 81

B.6. Implementations of Unification-Based Formalisms 82

Bibliography 83

CHAPTER 1

Introduction and History

These notes discuss a particular approach to encoding linguistic informa-

tion, both syntactic and semantic, which has been called “unification-based” or

“complex-feature-based.” The term “unification-based grammar formalism”

covers quite a variety of formal devices, which have been developed along

historically different paths. The fact that they are regarded as a group is due

perhaps partly to accidental and historical circumstances, partly to a shared

underlying view of grammar, but most importantly to their reliance in some

way on one particular device—unification.

Historically, these grammar formalisms are the result of separate research

in computational linguistics, formal linguistics, and natural-language process-

ing; related techniques can be found in theorem proving, knowledge repre-

sentation research, and theory of data types. Several independently initiated

strains of research have converged on the idea of unification to control the flow

of information.

Beginning with the augmented-transition-network (ATN) concept (like

so much of the research in modern computational linguistics) and inspired

by Bresnan’s work on lexically oriented nontransformational linguistics, the

lexical-functional grammar (LFG) framework of Bresnan and Kaplan was

evolved. Simultaneously, Kay devised the functional grammar (later unifi-

cation grammar, now functional unification grammar [FUG]) formalism.

Independently, Colmerauer had produced the Q-system and metamorpho-

sis grammar formalisms as tools for natural-language processing. The logic-

programming community, specifically Pereira and Warren, created definite-

clause grammars (DCG) on the basis of Colmerauer’s earlier work on these

formalisms and on the programming language Prolog. Independent work in

logic programming has used DCG as the foundation of many unification-based

formalisms, such as extraposition, slot, and gapping grammars.

1

2 1. INTRODUCTION AND HISTORY

Another strain of parallel research grew out of the work on nontransfor-

mational linguistic analyses, from which Gazdar developed generalized phrase

structure grammar (GPSG). In its later formalization by Gazdar and Pullum,

GPSG imported a unification relation. Pollard defined head grammars in his

dissertation, basing them on GPSG. Implementation of GPSG at Hewlett-

Packard led Pollard and his colleagues to design their head-driven phrase-

structure grammar (HPSG) as a successor to GPSG and head grammars.

Most recently, influenced by early papers on GPSG, Rosenschein and the

author devised PATR as a successor to the DIAGRAM grammar formalism at

SRI International. Although PATR did not use unification, it developed (under

the influence of FUG, later work in GPSG, and DCG) into PATR-II, perhaps

the simplest of the unification-based formalisms.

One thing has become clear through this morass of historical fortuities:

unification is a powerful tool for grammar formalisms. All these formalisms

make crucial use of unification in one manner or another, supplementing it, for

various linguistic or computational reasons, with other mechanisms.

A Caveat. Unification formalisms, as we have seen, can be traced to a

diversity of sources. Consequently, proponents of each formalism have their

own ideas on how their formalisms are appropriately viewed. To present each

formalism from the unique perspective of its practitioners would be difficult,

confusing, and would ultimately prove a disservice to the formalisms viewed

in toto as a coherent group. Instead, we will offer an underlying framework for

these formalisms intended to provide a coherent basis for their comparison and

evaluation. We hope that none of them will be unduly perverted by this rational

reconstruction of the field. Nonetheless, the reader should keep in mind that

this approach to the unification-based formalisms is peculiar to the author and

may not necessarily be subscribed to by all researchers.

CHAPTER 2

The Underlying Framework

2.1. The Role of Grammar Formalisms

Grammar formalisms are, first and foremost, languages whose intended

usage is to describe languages themselves—to describe the set of sentences

the language encompasses (the string set), the structural properties of such

sentences (their syntax), and the meanings of such sentences (their semantics).

Each individual grammar written in a grammar formalism (the metalanguage)

encodes an analysis of an object language. There are several reasons we might

want such a metalanguage:

• To provide a precise tool for the description of natural languages.

• To delimit the class of possible natural languages.

• To provide a computer-interpretable characterization of natural lan-

guages.

The choice of this metalanguage in which the analyses are encoded is

critical, since it determines the following three parameters which serve as im-

portant criteria of grammar formalisms:

• Linguistic felicity: The degree to which descriptions of linguistic

phenomena can be stated directly (or indirectly) as linguists would

wish to state them.

• Expressiveness: Which class of analyses can be stated at all.

• Computational effectiveness: Whether there exist computational de-

vices for interpreting the grammars expressed in the formalism and,

if they do exist, what computational limitations inhere in them.

Toward the first goal of a grammar formalism as a descriptive tool, lin-

guistic felicity and expressiveness are most important. Toward the second goal

of universal linguistic delimitation, linguistic felicity and lack of expressive-

ness are of foremost importance. Finally, toward the final goal of computer-

interpretable linguistic characterization, all three criteria are vital.

3

4 2. THE UNDERLYING FRAMEWORK

The criterion of expressive power merits special consideration. While

power is considered an advantage for a descriptive or computational tool, it

is detrimental to a universal linguistic theory as commonly construed. Thus,

different motivating forces can lead us to different preferences in designing a

formalism. As our concern in these notes is primarily with the computational

interpretation of grammar formalisms, we will not be overly worried about

unconstrained expressive power. Nevertheless, certain of these theories, most

notably GPSG and LFG, are especially concerned with linguistic universals.

For such theories, expressive power is to be constrained, not promoted.

2.2. Some Particular Design Choices

These very general criteria certainly do not delineate an approach to grammar

formalisms very precisely, but they can be used to guide us in choosing a more

particular approach. Unification-based formalisms tend to make certain spe-

cific assumptions about what a grammar formalism should do. In general, they

require that grammar formalisms be

• surface-based: providing a direct characterization of the actual sur-

face order of string elements in a sentence,

• informational: associating with the strings information from some

informational domain,

• inductive: defining the association of strings and informational el-

ements recursively, with new pairings being derived by merging

substrings according to prescribed string-combining operations, and

merging the associated informational elements according to pre-

scribed information-combining operations, and

• declarative: defining the association between strings and informa-

tional elements in terms of what associations are permissible, not

how they are computed.

More specifically, these informational elements are characterizable as

• complex-feature-based: as associations between features and values

taken from some well-defined, possibly structured set.

These complex-feature-based informational elements are given various

names in the literature; we will uniformly refer to them as feature structures.

Looking ahead to the more mathematical view of feature structures that we

will develop shortly, we can take this domain to be a set of graphs over a finite

set of arc labels and a finite set of atomic values. This will provide a useful

2.3. COVERAGE OF THE FRAMEWORK 5

mathematical abstraction of the notion of informational element which admits

of several combinatorial operations currently used in linguistics. For example,

consider the combination of two sets of feature structures that involves tak-

ing the union of the feature/value pairs (as long as they are consistent) and,

in case both sets have values for the same feature, combining these values

recursively. This mode of combination, which can be defined formally as a

graph-combining process to reflect this informal description, is exactly the no-

tion of unification we have been alluding to, a primary operation of functional

unification grammar, lexical-functional grammar, generalized phrase-structure

grammar, and definite-clause grammar. Other operations (e.g., generaliza-

tion, disjunction, and overwriting) can be similarly defined, but unification

plays a central role in all of the theories discussed in this paper, thus the term

unification-based grammar formalism.

2.3. Coverage of the Framework

In Section 5.1 we will discuss mathematical measures of the expressive-

ness of particular formalisms falling within this methodological class. The

following list is intended to help the reader develop an intuitive appreciation

of the breadth and diversity of linguistic formalisms that express analyses in

this manner. Not all of these formalisms are based on unification, or even on

complex feature structures, but they can all be modeled to a great extent in this

way; more importantly, they are all surface-based, informational, inductive,

and declarative in the broad senses outlined above.

Categorial grammar: A pure categorial grammar, allowing functional

application, uses string concatenation to form constituents. The in-

formational elements are complex categories that may be regarded

as having a category-valued functor feature and an argument fea-

ture. For instance, a category (S/NP)/NP (e.g., for the verb “loves”)

might be encoded in a feature/value system with a functor feature

whose value is the recursive encoding of S/NP into functor and ar-

gument features, and with an argument feature whose value is the

final argument NP. Variations on this technique are widely used in

PATR-II grammars and grammars based on the head grammar and

HPSG formalisms.

6 2. THE UNDERLYING FRAMEWORK

The categorial system of Ades and Steedman (1982), a related

formalism, still fits within this class although it includes both func-

tional application and composition.

Similarly, Montague grammars (e.g., Montague (1974)) are di-

rectly stated as pairings of string-combining and denotation-combi-

ning rules. The informational elements can be thought of as being

comprised of a complex category feature (as described above for cat-

egorial grammar) and a feature whose value is the denotation of the

expression. Although certain variants of Montague grammar would

be unhappily characterized as directly characterizing surface order,

much of the literature falls within this broad methodology.

GPSG: GPSG (Gazdar et al., 1985), since it uses a context-free base,

involves only concatenation to build up the surface string (as do LFG

and DCG). Its informational domain is a restricted feature/value sys-

tem, involving both simply-valued features (e.g., number, case) and

complex-valued features (e.g., slash, refl).1 (See Section 4.6.)

Head grammars: Head grammars (Pollard, 1984) and HPSG (Pollard,

1985a) extend GPSG by respectively introducing head-wrapping

string operations and removing the restrictions on the feature sys-

tem that yield GPSGs context-freeness. Nonetheless, such gram-

mars belong to a surface-based feature/value methodology. (See

Section 4.7.)

LFG: LFG’s (Bresnan, 1982) informational structures, called f-struc-

tures, are a recursive feature/value system with certain special-

ized types of features (e.g., pred) and information (e.g., concerning

bounding and constraints). (See Section 4.5.)

FUG: Through FUG’s (Kay, 1983) patterns, concatenation is man-

dated as the constituent-forming operation.2 Functional structures,

the informational entities, are a generalized feature/value system.

(See Section 4.3.)

1The use of metarules requires some flexibility in interpreting GPSG in this class. We merely

disregard them and view GPSGs as already being closed under metarules. Note that recent versions

of GPSG have made less and less use of metarules, preferring to establish generalizations in the

lexicon.
2Recent work extending the expressivity of the pattern language allows for more flexibility

in combining strings.

2.3. COVERAGE OF THE FRAMEWORK 7

DCG: Terms are the basic information-bearing structures in DCG

(Pereira and Warren, 1980). They can be thought of as a degener-

ate case of a feature/value system in which the features correspond

to argument positions. In particular, a term f (a, b, c) may be thought

of as having a functor feature whose name is f and whose arity is 3,

plus three argument features with respective values a, b, and c. (See

Section 4.4.)

In fact, viewed from a computational perspective, it is not surprising that so

many paradigms of linguistic description can be encoded directly with gen-

eralized feature/value structures of this sort. Similar structures have been put

forward by various computer scientists as general mechanisms for knowledge

representation (Ait-Kaci, 1985) and data types (Cardelli, 1984). Thus, we have

hardly constrained ourselves at all even though limited to this methodology.

In summary, the methodological class outlined above involves

• The association of strings with elements in a system of features and

(possibly structured) values.

• The inductive building of such associations by the simultaneous rule-

based combination of substrings as well as of the associated infor-

mational elements.

CHAPTER 3

The Simplest Unification-Based Formalism

3.1. Overview of the Formalism

As an illustrative example, we will fix upon a choice of string- and infor-

mation-combining operations so as to yield a first, simple, unification-based

formalism, the PATR-II formalism developed at SRI International. The con-

straints we impose are the following:

• Concatenation: Concatenation is prescribed as the sole string-

combining operation. This causes our formalism to be context-free-

based (though certainly not context-free in formal power, as dis-

cussed in Section 5.1).

This first constraint eliminates the possibility of directly stating

head-grammar analyses (which use an operation of head-wrapping)

and those Montagovian analyses that use such string operations as

wrapping (Bach, 1980) and substitution (Montague, 1974). How-

ever, analyses within these systems can often be modeled indirectly.

• Unification: Unification is prescribed as the sole information-combi-

ning operation. This causes our formalism to be completely declar-

ative (see the discussion of Section 5.1) and its interpretation order-

independent.

Reliance on unification is in happy concurrence with linguistic

practice, since unification is a primary operation in many current

linguistic grammar formalisms; moreover, its typical applications—

pattern-matching, equality testing, and feature passing—are found

in an even wider range of linguistic analyses. Unification can also

be used to model analyses with many other combining operations

and can sometimes even substitute for string operations other than

concatenation.

We now move beyond general comments to the task of making precise

the formalism just described. First, we define the domain of informational

9

10 3. THE SIMPLEST UNIFICATION-BASED FORMALISM

elements and concomitant notions of subsumption and unification. Then we

describe how the inductive pairing rules can be notated. This will lead us to

our first very simple unification-based formalism.

3.2. The Informational Domain

Unification-based formalisms use as their informational domain a system

based on features and their values. We will refer to elements of this domain as

feature structures; other works call them f-structures (in LFG), feature bundles,

feature matrices or categories (in GPSG), functional structures (in FUG), terms

(in DCG), or dags (in PATR-II, as an acronym for directed acyclic graph). A

feature structure is a partial function from features to their values. For instance,

we might have a function mapping the feature number onto the value singu-

lar and mapping person onto third. The common notation for such a feature

structure is




















number: singular

person: third





















(D3sg)

Let us call this structure D3sg.1

One of the distinguishing characteristics of unification-based formalisms

is that the feature values may themselves be structured. For example, D3sg

might be just one component (the agreement component) of a larger structure

associated with, say, a third-person singular noun phrase.




































cat: NP

agreement:





















number: singular

person: third

























































(DNP3sg)

The final important characteristic of feature structures is that they can be

reentrant. A reentrant feature structure is one in which two features in the

structure share one common value. We must carefully distinguish between

two features with one value and the weaker notion of two features with two

different but similar values. Another way of viewing the distinction in terms

of types and tokens of feature structures is that, in the first case, we have one

token, whereas in the second, we have two tokens both of the same (one) type.

1We will usually use subscripted D to denote feature structures. Also, as done above, we

will put such mnemonics parenthetically adjacent to the feature structure.

3.2. THE INFORMATIONAL DOMAIN 11

Of course, since feature structures can be viewed as both types and tokens, this

distinction is critical.

For instance, in Dsim below, we have features f and g with two distinct

feature structure values of the same type.


























f :
[

h: a
]

g:
[

h: a
]



























(Dsim)

In Did, f and g share one value, also of the same type as the value of f or g in

Dsim.






















f : 1
[

h: a
]

g: 1























(Did)

A shared value is notated by using coindexing boxes on the values. The single

value is written only once, with a coindexing box labeling it. The other fea-

tures that share the same value just put the coindexing box as their value. An

alternative notation, found in the LFG literature, uses lines from one value to

another in the following manner






















f :
[

h: a
]

g:























(Did)

Other notations could be imagined. Note that the equals symbol (=) is always

used for token, not type, identity in this paper.

We now characterize feature structures a little more rigorously in order to

introduce some new concepts.

3.2.1. Basic Concepts. Feature structures come in two varieties: com-

plex (like D3sg) and atomic (like the values third and singular in D3sg). As

mentioned before, complex feature structures can be viewed as partial func-

tions from features to values (which are themselves feature structures). The

notation D(f) will therefore denote the value associated with the feature f in

the feature structure D. For instance, D3sg(number) = third. In the same vein,

we can refer to the domain of a feature structure D as dom(D). For example,

Dom(D3sg) = {number, person}. A feature structure with an empty domain

is often called an empty feature structure or a variable. Variables are notated

(in the obvious way) as []. A path in a feature structure is a sequence of

features (notated, e.g., 〈agreement number〉), which can be used to pick out

12 3. THE SIMPLEST UNIFICATION-BASED FORMALISM

a particular subpart of a feature structure by repeated application, so, by ex-

tending the notation D(p) in the obvious way to include the substructure of

D picked out by the path p, we conclude that DNP3sg(〈agreement number〉) =

third.

3.2.2. Subsumption. There is a natural lattice structure for feature struc-

tures that is based on subsumption—an ordering on feature structures that

roughly corresponds to the compatibility and relative specificity of informa-

tion contained in them. Recall that feature structures are serving an informa-

tional function; by associating a particular feature structure with a phrase, we

are making a claim about that phrase. For example, by associating the feature

structure DNP3sg with the phrase “Arthur” we are claiming that the phrase has a

certain category and agreement properties, i.e., that it is a third-person singular

noun phrase. The simpler feature structure DNP

[

cat: NP
]

(DNP)

makes the compatible but more general claim about a phrase that it is a noun

phrase, but leaves open the question of what its agreement properties are. Thus,

DNP is said to carry less information than, to be more general than, or to sub-

sume DNP3sg.

Viewed intuitively, then, a feature structure D subsumes a feature structure

D′ (notated D v D′) if D contains a subset of the information in D′. More

precisely, a complex feature structure D subsumes a complex feature structure

D′ if and only if D(l) v D′(l) for all l ∈ dom(D) and D′(p) = D′(q) for all paths

p and q such that D(p) = D(q).2 An atomic feature structure neither subsumes

nor is subsumed by a different atomic feature structure. Variables subsume all

other feature structures, atomic or complex, because, as the trivial case, they

contain no information at all.

Despite the relatively complex definition, subsumption is a quite intuitive

notion thought of from its informational perspective. We list here some exam-

ples to justify this intuition. Consider the following feature structures:

[] (Dvar)

[

cat: NP
]

(DNP)

2Recall that by “=” here and elsewhere we mean token identity, i.e., that the paths share a

common value.

3.2. THE INFORMATIONAL DOMAIN 13























cat: NP

agreement:
[

number: singular
]























(DNPsg)





































cat: NP

agreement:





















number: singular

person: third

























































(DNP3sg)







































































cat: NP

agreement:





















number: singular

person: third





















subject:





















number: singular

person: third



























































































(DNP3sgS ub j)

















































cat: NP

agreement: 1





















number: singular

person: third





















subject: 1

















































(D′NP3sgS ub j)

The following subsumption relations hold:

Dvar v DNP v DNPsg v DNP3sg v DNP3sgS ub j v D′NP3sgS ub j

3.2.3. Unification. Subsumption is only a partial order—that is, not ev-

ery two feature structures are in a subsumption relation with each other. This

can come about because the feature structures have differing but compatible

information, as in






















cat: NP

agreement:
[

number: singular
]























(DNPsg)























cat: NP

agreement:
[

person: third
]























(DNP3)

or because they have conflicting information, e.g.,

14 3. THE SIMPLEST UNIFICATION-BASED FORMALISM























cat: NP

agreement:
[

number: singular
]























(DNPsg)























cat: NP

agreement:
[

number: plural
]























(DNPpl)

The difference between the two cases is that in the first case, there exists

a more specific feature structure that is subsumed by both feature structures,

namely,




































cat: NP

agreement:





















number: singular

person: third

























































(DNP3sg)

whereas in the second case, no such feature structure exists. This notion of

combining the information from two feature structures to obtain a feature

structure that includes all the information of both is central to unification-based

formalisms, for it is the notion of unification itself.

Of course, there are many feature structures that are subsumed by DNP3

and DNPsg. For instance, the following would have done just as well:




















































cat: NP

agreement:



































number: singular

person: third

gender: masculine























































































(DNP3sgM)

In general, though, we are interested in the most general feature structure of

this type—the one that contains all the information from the unified feature

structures but no additional information. In formal terms, we define the unifi-

cation of two feature structures D′ and D′′ as the most general feature structure

D, such that D′ v D and D′′ v D. We notate this D = D′ t D′′.

As we have seen, not all pairs of feature structures can be unified in this

way; they may contain conflicting information. In this case, unification is said

to fail.

The following examples may facilitate the intuition of unification as an

information-combining function:

3.2. THE INFORMATIONAL DOMAIN 15

(Unification adds information.)
[

cat: np
]

t















agreement:
[

number: singular
]















=























cat: np

agreement:
[

number: singular
]























(Unification is idempotent.)
[

cat: np
]

t























cat: np

agreement:
[

number: singular
]























=























cat: np

agreement:
[

number: singular
]























(Variables are unification identity elements.)

[]

t























cat: np

agreement:
[

number: singular
]























=























cat: np

agreement:
[

number: singular
]























(Unification acts differently depending on whether values are similar or iden-

tical.)








































agreement:
[

number: singular
]

subject:















agreement:
[

number: singular
]























































t





















subject:















agreement:
[

person: third
]



































16 3. THE SIMPLEST UNIFICATION-BASED FORMALISM

=























































agreement:
[

number: singular
]

subject:



























agreement:





















number: singular

person: third





































































































































agreement: 1

[

number: singular
]

subject:
[

agreement: 1

]

































t





















subject:















agreement:
[

person: third
]



































=















































agreement: 1





















number: singular

person: third





















subject:
[

agreement: 1

]















































This last example is crucial in illustrating the important role of reentrancy

in unification. In the example, we have used unification to add information

about the agreement features of the subject3 of a phrase, and in so doing, be-

cause of the reentry in the feature structure, we have concluded information

about the agreement features of the phrase itself. Such examples will play an

increasingly significant role in the sections to come.

3.2.4. Feature Structures as Graphs. Feature structures can be viewed

as rooted, directed, acyclic4 graph structures (from which the term “dag” is

derived as an acronym) whose arcs are labeled with feature names. Each arc

points to another such dag or an atomic symbol.

The feature structure D′NP3sgS ub j would be expressed in a graph-structural

notation as in Figure 1. Reentry in the graph corresponds to coindexing in

3We use the linguistic term subject here and later in an informal manner. This usage is

important to distinguish from its technical use in such theories as LFG and relational grammar. It

should be clear when we are using the word informally (as here) or in its technical application (as

in discussions of LFG, Section 4.5).
4Note that certain implementations allow cyclic graph structures, i.e., directed graphs (dgs)

in which a descendant dg has a feature whose value is the dg itself. These can be useful for

modeling the variable labels of LFG, as in equations of the form (↑ (↓ pcase)) =↓.

3.3. COMBINATORY RULES 17

np

singular third

cat

agreement

sub ject

agreement

number person

F 1

feature matrix notation. Underlying the graph-theoretic view is a twofold ra-

tionale. First, graph theory provides a simple and mathematically well-defined

vocabulary with which to model the various feature systems of linguistic the-

ories. Second, it leads to a coherent framework for investigating potential

structure-combining operations.

Such operations on graph structures abound. Notions of unification, gen-

eralization, disjunction, negation, overwriting, and other more idiosyncratic

operations can all be formally defined.

3.3. Combinatory Rules

Having characterized the informational domain, elements of which are

associated with strings, we now need to describe how the inductive rules for

building up the association can be represented. Rules must describe two things.

• How strings are concatenated to form larger strings.

• How the associated feature structures are related.

The former can be described with an abstraction of a context-free rule.

The latter is cast in terms of identities among subparts of the associated feature

structures. For instance, consider the following grammar rule:5

5The reader will notice an inconsistency of notation here in the paths used in rules. A

less abusive notation, more consistent with Section 3.2.1, would use X0(〈head subj〉) rather than

〈X0 head subj〉 . The notation employed here is simpler, however, and has historical precedent.

18 3. THE SIMPLEST UNIFICATION-BASED FORMALISM

X0 → X1 X2

〈X0 cat〉 = s

〈X1 cat〉 = np

〈X2 cat〉 = vp

〈X0 head〉 = 〈X2 head〉

〈X0 head subject〉 = 〈X1 head〉

(R1)

The context-free portion states that the constraint applies among three

constituents—the string associated with the first being the concatenation of

that associated with the second and third, in that order. In addition, it requires

that the values for the cat features of the constituents be S, NP, and VP, respec-

tively. The next identity requires that the value of the head feature associated

with the VP be identical to the head of the S. Finally, the subject of the S is

identical to the head of the NP.

For these identities to hold, the head value associated with the NP would

have to be compatible with the VP’s subject feature. In other words, the NP

fills the role of the VP’s subject.

As an example of string/feature-structure pairs admitted by this rule, con-

sider the following pairings:6

Uther sleeps 7−→

































































cat: S

head: 1















































form: finite

subject: 2



























agreement:





















number: singular

person: third





























































































































































Uther 7−→



















cat: NP

head: 2



















sleeps 7−→



















cat: VP

head: 1



















6We use the symbol 7−→ to notate pairings between strings and their associated feature struc-

tures. For instance, lexical pairings will later be thus notated.

3.3. COMBINATORY RULES 19

3.3.1. Identity and Unification Revisited. Note that the pairings shown

above are precisely those one would get by starting with the following simpler

feature structures for X1 and X2













































cat: NP

head:



























agreement:





















number: singular

person: third



























































































(DX1)

































































cat: VP

head:















































form: finite

subject:



























agreement:





















number: singular

person: third





























































































































































(DX2)

and then interpreting the identity statements in the rule as instructions to re-

place the substructures with their unifications in the three feature structures

associated with the three phrases. This replacement process is conventionally

(and ambiguously) referred to as unifying the substructures.7 Note that after

two substructures have been unified in this sense, a common value is thereby

introduced, because the process involves replacement by the same, not merely

similar, feature structures. In fact, for this reason, reentrant feature structures

and unifications can be thought of as duals of one another.

These simpler feature structures can in turn be derived from smaller

phrases by performing destructive unifications associated with other combi-

natory rules. The basis step for this recursive process rests, of course, in the

lexicon, which holds the primitive string/feature-structure pairings.

This systematic relationship between static identity and dynamic unifi-

cation is taken advantage of extensively. It allows a declarative formalism to

have a procedural interpretation. This interpretation is pervasive in unification-

based formalisms. Often we can think of proceeding bottom up, combining

subphrases by concatenation and their informational elements by destructive

unification thereby yielding the minimal feature structures that conform to all

the identities. Because this type of interpretation exists, such identities in rules

7Sometimes the process is referred to as destructive unification to differentiate it from the

algebraic relation on feature structures that was first introduced.

20 3. THE SIMPLEST UNIFICATION-BASED FORMALISM

are often referred to as unifications. We will see further examples of this inter-

pretation in Section 3.4.

However, it is important to keep in mind that the bottom-up interpreta-

tion is not the only, or even the principal, way of viewing unification-based

grammars. As discussed in Section 5.1, there is nothing inherently direc-

tional (bottom-up, top-down, left-to-right, or otherwise) about this or most

unification-based formalisms. Indeed, this property of order-independence,

declarativeness, or nonprocedurality, when taken together with the existence

of procedural, computational interpretations such as the bottom-up view just

sketched, is regarded as a prime advantage of the unification-based formalisms.

It is only with considerable trepidation that inherently procedural mechanisms

(such as some of the devices discussed in Section 4) are added to the for-

malisms.

3.3.2. Notational Sugar. Before going on, we introduce one useful nota-

tional convention. We can conventionally eliminate unifications for the special

feature cat (the major category feature), instead recording this information im-

plicitly by using it in the “name” of the constituent, e.g.,

S→ NP VP

〈S head〉 = 〈VP head〉

〈S head subject〉 = 〈NP head〉

(R1)

Whenever a constituent name is other than a (possibly subscripted) X, it is to

be conventionally interpreted as representing the value of the cat feature for

that constituent.

3.4. Some PATR-II Grammars

The unification-based grammar formalism just described is the PATR-II for-

malism, developed as a powerful, simple, least common denominator of the

various unification-based formalisms. In Chapter 4 we will use PATR-II as a

starting point for describing these other formalisms. First, however, we de-

scribe how some simple natural-language constructions can be encoded in

PATR-II grammars. The examples will perforce be oversimplified. How-

ever, the bibliography includes references to papers with more extensive anal-

yses.

We will introduce three increasingly complex sample grammars to handle

the following three constructs:

3.4. SOME PATR-II GRAMMARS 21

• Agreement of subject and verb for person and number.

• Subcategorization of verbs for particular postverbal complements.

• Semantics of sentences, expressed as encodings of logical forms.

As a side note, all three of the grammars developed here are listed in their

entirety in Appendix A in the machine-interpretable form used by the PATR-II

software.

3.4.1. Sample Grammar One: Agreement. The grammar rule R1, pre-

sented earlier and repeated here, forms the basis of our first grammar.

S→ NP VP

〈S head〉 = 〈VP head〉

〈S head subject〉 = 〈NP head〉

(R1)

When this rule is combined with one for identifying the head features of a verb

phrase with its head verb, i.e.,

VP→ V

〈VP head〉 = 〈V head〉
(R2)

and with a lexicon associating some words with corresponding feature struc-

tures, such as

Uther 7−→













































cat: NP

head:



























agreement:





















number: singular

person: third



























































































sleeps 7−→

































































cat: V

head:















































form: finite

subject:



























agreement:





















number: singular

person: third





























































































































































sleep 7−→

















































cat: V

head:































form: finite

subject:















agreement:
[

number: plural
]





























































































22 3. THE SIMPLEST UNIFICATION-BASED FORMALISM

and so on, the grammar thus formed admits the sentence “Uther sleeps” but

fails (properly) to admit “Uther sleep.” We can see this failure by attempting

to build the phrase bottom-up. The verb “sleep” participates in R2, giving us a

VP with the identical (because unified) head features; thus

sleep 7−→

















































cat: VP

head:































form: finite

subject:















agreement:
[

number: plural
]





























































































This phrase/feature-structure pair plus the lexical pair for “Uther” participate

potentially in R1. Unifying the cat features of the three constituents mutually

being constructed with S, NP, and VP, respectively, succeeds yielding

Uther sleep 7−→
[

cat: S
]

Uther 7−→ as before

sleep 7−→ as before

Unifying the head features of the S and VP results in

Uther sleep 7−→

















































cat: S

head: 1































form: finite

subject:















agreement:
[

number: plural
]





























































































Uther 7−→ as before

sleep 7−→



















cat: VP

head: 1



















But now the final unification fails. There is no feature structure that unifies

〈S head subject〉 and 〈NP head〉 . Since the unification fails, so does the rule

application, and the string “Uther sleep” is not admitted. Note that the cause of

the failure, the clash of number features on subject and verb, corresponds in-

tuitively to the number disagreement in the sentence. Also, this failure would

have occurred regardless of the order in which the unifications had been ap-

plied. It is in this sense that the formalism is order-independent.

In future examples, we will not go into such great detail in charting deriva-

tions and our terminology will become considerably looser. Caveat lector.

3.4. SOME PATR-II GRAMMARS 23

3.4.2. Sample Grammar Two: Subcategorization. The astute reader

will notice that the first sample grammar allowed no postverbal complements

of verbs, a considerable limitation. Our second grammar deals with the prob-

lem of lexical selection of postverbal “subcategorization frames”—the manner

in which, for example, the verb “storm” (as in “Uther storms Cornwall”) lex-

ically selects (subcategorizes for) a single postverbal NP, whereas “persuade”

subcategorizes for an NP and an infinitival VP as complements.

A simple solution would be to add rules of the form

VP→ V NP

〈VP head〉 = 〈V head〉
(R3)

and

VP1 → V NP VP2

〈VP1 head〉 = 〈V head〉

〈VP2 head form〉 = infinitival

(R4)

and so on, one for each subcategorization frame. The problem of matching up

verbs with a VP rule could be achieved (as usual) with unification. A feature

subcat in the verb’s feature structure would be forced to unify with an arbitrary

value specified in the rule. The following rules and lexical entries achieve such

a matching.

VP→ V NP

〈VP head〉 = 〈V head〉

〈V subcat〉 = np

(R′3)

VP1 → V NP VP2

〈VP1 head〉 = 〈V head〉

〈VP2 head form〉 = infinitival

〈V subcat〉 = npinf

(R′4)

24 3. THE SIMPLEST UNIFICATION-BASED FORMALISM

storms 7−→











































































cat: V

head:















































form: finite

subject:



























agreement:





















number: singular

person: third





























































































subcat: np











































































persuades 7−→











































































cat: V

head:















































form: finite

subject:



























agreement:





















number: singular

person: third





























































































subcat: npinf











































































Early GPSG used this type of analysis with some forty basic verb phrase rules.

In the second grammar, we adopt a more radical approach that takes fuller

advantage of the power of unification. Just as the first grammar had a “slot” for

the subject NP complement, the second grammar uses slots for all the comple-

ments, both pre- and postverbal. This is achieved through the feature structure

encoding of a list with features first and rest and end marker value end. The

slots in the list correspond to the complements in the following order: postver-

bal complements from left to right, followed by the preverbal subject. For

instance, the lexical entry for the verb “storms” would be given by the pairing

storms 7−→































































































































cat : V

head :
[

form :finite
]

subcat :























































































first :
[

cat :NP
]

rest :































































first :













































cat : NP

head :



























agreement :





















number :singular

person : third



























































































rest : end



















































































































































































































































































while for the verb “persuades” we would have the even more complex pairing

3.4. SOME PATR-II GRAMMARS 25

persuades 7−→

































































































































































































cat : V

head :
[

form :finite
]

subcat :

























































































































































first :
[

cat :NP
]

rest :































































































































first :









































cat : VP

head :
[

form :infinitival
]

subcat :
[

rest :end
]









































rest :































































first :













































cat : NP

head :



























agreement :





















number :singular

person : third



























































































rest : end





















































































































































































































































































































































































































































































































































The convoluted subcat value here lists the complements of “persuades” as, in

order, an NP (the object), a VP whose form is infinitival and whose subcatego-

rization requirement is a single element list (i.e., only the subject is missing),

and the subject NP itself (marked as third-person singular, to fold in the agree-

ment conditions).

As each postverbal complement is concatenated onto the VP, its feature

structure is unified with the next slot in the list. Thus, the verb can impose

requirements on its complements—e.g., category requirements, or requiring

a VP complement to be infinitival—by adding the appropriate features to the

slot, as was done to ensure agreement with the subject in the previous grammar.

Let us look at one such VP-forming rule that adds an NP complement to the

VP.

VP1 → VP2 NP

〈VP1 head〉 = 〈VP2 head〉

〈VP2 subcat first〉 = 〈NP〉

〈VP2 subcat rest〉 = 〈VP1 subcat〉

(R5)

The unifications in R5 require, respectively, that

• Head features are shared by the VPs.

26 3. THE SIMPLEST UNIFICATION-BASED FORMALISM

• The NP is unified with the first remaining slot in the subcategoriza-

tion frame for the VP.

• The subcategorization frame for the newly formed VP is that of the

shorter VP minus the first element just found.

The grammar therefore builds a left-recursive structure for verb phrases,

so that, for instance, the phrases “persuades,” “persuades Arthur,” and “per-

suades Arthur to sleep” will all be VPs—the first subcategorizing an NP, a VP

and a subject NP (as just seen in the foregoing lexical entry), the second a VP

and a subject NP, and the third just the subject NP. The phrase structure for

this final VP in accordance with this grammar would be

VP
PPPP

����

VP
H

HH
�

��

VP

V

persuades

NP

Arthur

VP
ll,,

VP

V

to

VP

V

sleep

Of course, a similar rule would be required for VP complements.

VP1 → VP2 VP3

〈VP1 head〉 = 〈VP2 head〉

〈VP2 subcat first〉 = 〈VP3〉

〈VP2 subcat rest〉 = 〈VP1 subcat〉

(R6)

How does this left recursion bottom out? We add a rule for just this pur-

pose.

VP→ V

〈VP head〉 = 〈V head〉

〈VP subcat〉 = 〈V subcat〉

(R7)

Finally, we need a rule to form sentences from NP and VPs whose sub-

categorization frame requires no more postverbal complements. This latter

condition is verified by unifying the rest of the frame with the end marker

value end. We also unify the subject NP with the last remaining element in the

frame.

3.4. SOME PATR-II GRAMMARS 27

S→ NP VP

〈S head〉 = 〈VP head〉

〈S head form〉 = finite

〈VP subcat first〉 = 〈NP〉

〈VP subcat rest〉 = end

(R8)

A final optimization can be made. Rather than having separate rules for

each possible category of postverbal complement, we can substitute the fol-

lowing single general rule:8

VP1 → VP2 X

〈VP1 head〉 = 〈VP2 head〉

〈VP2 subcat first〉 = 〈X〉

〈VP2 subcat rest〉 = 〈VP1 subcat〉

(R9)

Thus instead of the forty basic rules (and the additional rules derived by

metarule) that the early GPSG analysis postulated, we need just this one.

3.4.3. Sample Grammar Three: Logical Form. The simplicity and

generality of the second sample grammar is such that the addition of a

“semantics”—in the form of construction of logical forms—requires no

changes in the grammar itself. Thus our third sample grammar differs only

in the lexical pairings.

We add semantics by encoding logical forms using the features pred (for

the predicate) and arg-i (for the ith argument). For instance, the logical ex-

pression we want to construct for the sentence “Uther storms Cornwall” might

be



































pred: storm

arg1: uther

arg2: cornwall



































(DLF1)

for “Uther persuades Arthur to sleep” we might have

8Note that this rule does not uniformly encode category information in the name of the non-

terminal. For a discussion of the notational convention being assumed here refer to Section 3.3.2.

28 3. THE SIMPLEST UNIFICATION-BASED FORMALISM





































































pred: persuade

arg1: uther

arg2: arthur

arg3:





















pred: sleep

arg1: arthur

























































































(DLF2)

and so on.

In this grammar, the encoded logical form will be the value of the feature

structure’s 〈head trans〉. For instance, the lexical entry for Uther will be

Uther 7−→























































cat: NP

head:





































agreement:





















number: singular

person: third





















trans: uther



























































































Now, what will the lexical entry for a verb like “storms” look like—in

particular, its semantics? Part of it is clear: the pred feature value should be

storm. But what of the arguments? All that is known of the argument values

is that they should be the respective translations of the various complements

of the verb, whatever those might be. We can state this directly by identifying

(unifying) the value for arg1 with the translation of the subject slot in the verb’s

subcat frame, and the arg2 with the translation of the object slot.

3.4. SOME PATR-II GRAMMARS 29

storms 7−→

















































































































































































































cat : V

head :























































form : finite

trans :



































pred :storm

arg1 : 2 []

arg2 : 1 []

























































































subcat :

























































































































first :























cat : NP

head :
[

trans : 1

]























rest :









































































first :























































cat : NP

head :





































agreement :





















number :singular

person : third





















trans : 2



























































































rest : end

















































































































































































































































































































































































































Readers can convince themselves that the third grammar, which includes these

types of lexical entries, derives appropriate logical forms for various sentences.

Note the importance of the trans feature’s being under head. Because of

the sharing of head features, the trans of the S will be identified with the trans

of the head verb of the sentence, which is exactly what we want. Along the

way of course, unifications of complements with the elements of the subcate-

gorization frame will cause the arguments of the verb’s translation to be filled

in incrementally.

3.4.4. Coverage of the Sample Grammars. By suitable lexical defini-

tion, the grammar just developed has been shown to cover

• agreement of subject and verb,

• subcategorization for NPs and VPs of all types, and

• logical form construction.

Furthermore, the same grammar could be used for

• auxiliaries,

• subcategorization for Ss,

• control, and

30 3. THE SIMPLEST UNIFICATION-BASED FORMALISM

• equi and raising verbs.

This might give the reader some awareness of the power of lexically oriented

systems, as well as for the conciseness that unification makes possible. Most

of the unification-based formalisms—LFG, PATR-II, and HPSG especially—

tend to use this lexically oriented style of analysis, proposed originally by

LFG.

3.4.5. Encoding Lexical Generalizations. The simplicity of these gram-

mars stems from their use of complex lexical structures.9 Although the gram-

mars are thus kept simple, we now have the problem of dealing with unwieldy

lexical feature structures, such as those encountered in the previous section.

Clearly, no one is willing to write such complex and redundant feature struc-

tures for each lexical entry. There are two solutions to this problem.

First, we can come up with general techniques for expressing lexical gen-

eralizations so as to allow lexical entries to be written in a compact notation.

We will defer further discussion of such techniques for lexical organization to

the end of the following chapter, Section 4.8. Suffice it to say that such devices

as templates and lexical rules in PATR-II, lexical-redundancy rules in LFG,

and default inheritance in HPSG serve just this purpose: to express lexical

generalizations. As grammars rely more and more on complex lexical encod-

ings (as is the current trend in unification-based formalisms) these techniques

become increasingly important.

Second, the formalism can be extended in various ways to be more ex-

pressive: special features with complex behavior in terms of unification can be

added thereby leveraging the unification notion. Much of the following chapter

on extended formalisms will have just this quality.

9Note that it does not arise from the use of unification itself. One could certainly write

unification-based grammars that lack the lexical orientation of this third sample grammar, thereby

putting more complexity in the rules and less in the lexicon.

CHAPTER 4

Extended Formalisms

4.1. Introduction

For various reasons including those just discussed, formalisms under the

unification rubric typically include devices other than the rudiments found in

PATR-II. In this section, we discuss several such extensions, organizing the

discussion around the various formalisms in which they are found. At the

same time, we will be presenting the notations and technical restrictions of

the formalisms as well. Amidst all this verbiage, the reader should keep in

mind that often, in fact usually, these techniques, notations, and restrictions are

separable. A formalism designer can “mix and match” the various components

in order to create an individually tailored tool.

The decision to present PATR-II before the other formalisms was based

on expository convenience, it being by far the simplest of the lot. Justice could

not have been done to any of the others in so short a time, nor can it be in the

sections to follow. Especially lacking are the motivations behind the designs

of the various formalisms, since we concentrate on comparing their formal and

computational characteristics. For this reason, these sections may seem sterile

from a linguistic viewpoint. The reader is therefore urged to read the cited

articles for a more expansive presentation.

4.2. Two Classes of Formalisms

However, we can give an overview of some of the general motivations un-

derlying certain aspects of the formalisms. The formalisms fall into two main

classes: those designed as linguistic tools and those intended to be linguistic

theories. As mentioned in Section 2.1, these goals are often at odds with each

other, especially in the area of expressivity. Indeed, these differences are mani-

fested in the types of extensions the formalisms include. Formalisms of the tool

type (e.g., PATR-II, FUG, DCG) typically possess very general mechanisms

for increasing expressive power, whereas those of the theory type (e.g., LFG,

31

32 4. EXTENDED FORMALISMS

GPSG) tend to incorporate devices designed for very specific purposes related

to the particular type of linguistic analysis they prefer. Whereas understanding

the design choices of the first type is comparatively independent of an under-

standing of the linguistic analyses embedded in their grammars, understanding

the design choices of the second type is intimately tied to a comprehension of

their linguistic analyses, for these choices have been claimed to embody uni-

versal linguistic principles. Consequently, we will be unable to present much

detailed description for the second type of framework. Fortunately, detailed

volumes are now available for both of the main unification-based linguistic

theories.

Our discussion will begin with the tool-oriented formalisms.

4.3. Functional Unification Grammar

Functional unification grammar (previously called unification grammar, and,

even earlier, functional grammar) was designed by Martin Kay as a general

linguistic tool using unification as its only operation. Kay’s motivations were

twofold: first, to maintain a computational aspect to the formalism; second, to

allow structural and functional notions to work side by side in the formalism.

FUG uses several innovations to extend the expressivity of the formalism in a

general way. We will discuss three of them, namely,

• patterns and constituent sets,

• disjunction, and

• ANY values.

4.3.1. Patterns and Constituent Sets. As mentioned in Section 3.3.1,

shared values in feature structures and unifications are two sides of the same

coin. Whereas PATR-II opts for notating the unification side of the coin in its

rules, FUG uses reentrant feature structures exclusively. Thus an FUG rule

is merely a feature structure (or functional structure, as it is called in the lo-

cal jargon), with shared values where PATR-II would have unifications. For

instance, the rule R1 would be expressed in FUG as

4.3. FUNCTIONAL UNIFICATION GRAMMAR 33



























































































cat: S

head: 1

[

subject: 2

]

subj:



















cat: NP

head: 2



















pred:



















cat: VP

head: 1













































































































(R1)

where subj and pred are the functions that will be unified with the subject noun

phrase and predicate verb phrase, respectively.

But how is this last bit of information—the identities of the constituent

functions—to be notated? FUG uses a special feature for this, the constituent

set or cset. Its value is a set of feature structures, which are the components of

the rule that are to be associated with subconstituents. Thus, we have













































































































cset: { 3 4 }

cat: S

head: 1

[

subject: 2

]

subj: 3



















cat: NP

head: 2



















pred: 4



















cat: VP

head: 1































































































































(R1)

Finally, we must have a way of knowing how the strings associated with

these subconstituents are composed to form the whole constituent. For this

purpose, another new feature pattern is used, whose value is a sequence of the

members of the constituent set; the order in the sequence corresponds to the

concatenation order of the subconstituent strings.

34 4. EXTENDED FORMALISMS





























































































































cset: { 3 4 }

pattern: 〈 3 4 〉

cat: S

head: 1

[

subject: 2

]

subj: 3



















cat: NP

head: 2



















pred: 4



















cat: VP

head: 1















































































































































(R1)

Actually, FUG uses a slightly different notation for functional structures,

eschewing coindexing boxes for path specifications to mark reentrancy, using

equal signs rather than colons, and notating sets and sequences with parenthe-

ses.











































































































cset = (〈subj〉〈pred〉)

pattern = (〈subj〉〈pred〉)

cat = S

head =
[

subject = 〈subj head〉
]

subj =
[

cat = NP
]

pred =



















cat = VP

head = 〈head〉





























































































































(R1)

The example we have chosen is quite artificial, for, if we had been writing

this rule from scratch in FUG, we would have taken more direct advantage of

csets and patterns. A simpler formulation of the same idea, if not the same

rule, is

4.3. FUNCTIONAL UNIFICATION GRAMMAR 35





























































































cset = (〈head subject〉〈pred〉)

pattern = (〈head subject〉〈pred〉)

cat = S

head =

[

subject =
[

cat = NP
]

]

pred =



















cat = VP

head = 〈head〉















































































































(R1)

Here we have exploited the fact that paths in the csets need not be top-level.

Thus, FUG incorporates in a single feature structure all the information

found in the various parts of a PATR-II rule. It does this by introducing certain

features (cset, pattern) with special interpretations. Unification of functional

structures must be extended to handle these new features appropriately. This

theme of extending formalisms by adding features with special interpretations

in their unificational behavior is a common one which we will see recurring in

subsequent discussion.

4.3.2. Disjunction. FUG takes seriously the concept of functional struc-

tures as the sole repositories of linguistic information. We have seen one in-

stance of this, the idea that rules are not different kinds of things than functional

structures. What does FUG do then with the concept of a grammar? How is

the grammar to be interpreted as just another functional structure?

The problem is that the parts of a rule, like the parts of a functional struc-

ture, operate conjunctively—that is, they impose constraints that all have to

be satisfied simultaneously. But a grammar is disjunctive. For a string to be

admitted by a grammar, only one of the rules need be satisfied. We need a way

of introducing disjunction into functional structures.

FUG incorporates a special notation for disjunction (or, as it is called in

the FUG literature, alternation) in functional structures. Enclosing a set of

(normal, conjunctive) functional structures within braces (‘{}’) is interpreted

to mean that only one of the set of functional structures need be unified with.

A grammar, then, is just a disjunctive set of functional structures each corre-

sponding to a rule.

This type of general disjunction can be differentiated from so-called value

disjunction, in which a feature is given a disjunctive specification as its value.

Once we have both types of disjunction, we can use them in all sorts of ways,

36 4. EXTENDED FORMALISMS

since we can have disjunctions embedded within functional structures which

are themselves embedded within disjunctions, and so forth. For instance, we

might want to say that the present tense verb “storm” is either plural or first-

or second-person singular. We can do this with the lexical pairing

storm 7−→













































































cat: V

tense: present

subject:













































agreement:





















































number: singular

person: {first second}



















[

number: plural
]



























































































































































Again, the notion of unification of functional structures must be extended

to handle value and/or general disjunction. Once this is done, the expressive

power of disjunction is at our disposal.

4.3.3. ANY Values. The final FUG extension we discuss is not a feature

but an atomic value with a special interpretation. The atomic value ANY in

FUG has the following unificational behavior. ANY unifies with anything, just

as a variable does. However, unlike variables, for a final functional structure

to be well-formed, no ANYs may be present; they must each have unified with

something else. The notion of final functional structure is crucial here. In

FUG, it is intended to correspond to the functional structure of a whole sen-

tence. One could imagine interpretations in which other definitions of “final”

are employed.

A good example of the use of ANY is in encoding subcategorization facts.

Suppose we wanted to use a “functional” approach to subcategorization, rather

than the “sequence” approach used in the same PATR-II grammars. That is, we

want to have features corresponding to various grammatical functions such as

subject, direct object, indirect object, verbal complement, etc. This is just the

extension of our first sample grammar to include grammatical functions other

than the subject.

The reason we did not use this method for subcategorization in the PATR-

II grammars presented earlier is simple. Although there is a convenient way of

guaranteeing that a particular verb will not get, say, an indirect object—e.g.,

by putting in that verb’s lexical entry the value none for the feature indirect-

object—there is no convenient way of requiring that an indirect object be

4.4. DEFINITE-CLAUSE GRAMMARS 37

present. This is exactly what ANY allows. By giving the value ANY to the

feature indirect-object we require that something eventually unify with that

feature—presumably the feature structure of an indirect object noun phrase.

Of course, ANY can be used for other purposes; it is not restricted to handling

subcategorization.

Because of this aberration in the definition of its unificational behavior—

that it is a well-formed atomic value except in final functional structures—

ANY can be viewed as being a nonmonotonic device. That is, a system with

ANY values can have an ill-formed functional structure become well-formed

through further unifications. In this sense, ANY violates the spirit of declara-

tiveness, although it does so in such a weak way that we are likely to be willing

to put up with it. Nonetheless, it raises an issue that warrants further attention.

(See Section 5.1.)

4.4. Definite-Clause Grammars

Definite-clause grammars arose from work in Prolog by Pereira and Warren.

DCG and its related formalisms (slot grammars, extraposition grammars, gap-

ping grammars, modified structure grammars, etc.) all use a variety of unifica-

tion based on term structures rather than feature structures. Term unification

was originally developed for use in automatic theorem-proving, and was taken

over by Prolog itself; it was therefore incorporated wholesale into DCGs.

4.4.1. Term Unification. Terms are the informational elements in DCG.

A term (corresponding to a complex feature structure in PATR-II) is notated in

the way familiar from logic and mathematics: a predicate symbol is followed

by a parenthesized series of smaller terms. The basic terms are constants (cor-

responding to the atomic feature structures) and variables (corresponding to

PATR-II variables). These are notated with lower- and uppercase strings, re-

spectively, following the convention of Prolog. Reentrancy is notated by the

sharing of variables.

For instance, the following are terms:

s(head(SubjHead, Form)))

np(SubjHead)

vp(head(SubjHead,Form)))

Terms differ from feature structures in two important ways.

38 4. EXTENDED FORMALISMS

• Order: Rather than identifying values by associating them with a

feature, terms identify them by their linear order in the term struc-

ture.

• Arity: The number of elements in a term structure is significant in

unification.

Thus, agreement(third, singular) will not unify with agreement (singular,

third) because the order of arguments pairs third with singular, which do not

unify. Also, it fails to unify with agreement(third) because the arities do not

match. The first takes two arguments, whereas the second takes only one.

DCG rules, like those of PATR-II, use a context-free skeleton to associate

the string-combining and information-combining operations. Rule R1 would

be expressed in DCG as

s(head(SubjHead,Form))→ np(SubjHead),

vp(head(SubjHead,Form)).
(R1)

Note that, since only variables can be used to mark shared values, a clumsy

encoding of the unification 〈S head〉 = 〈VP head〉 was used that actually had

to mention all the head features separately. Another disadvantage of term

structures is that the lack of features labeling values increases the cognitive

burden in interpreting the terms. A grammar writer must remember which

argument positions correspond to which functions. Finally, since arity is sig-

nificant, if a grammar writer wants to specify a value for one of the elements

of a term, all the rest of the elements must be specified, at least by marking

them as variables. This leads to grammars with lots of variables strewn across

the rules.

Nonetheless, DCGs are quite useful for several reasons. First, because

they can be run virtually directly as Prolog code, and efficient Prolog compil-

ers exist, grammars written in DCG can be compiled directly into fast parsers.1

The CHAT system (Pereira, 1983), a natural-language interface to a Prolog

database, is capable of parsing a sentence, building a logical form transla-

tion, constructing a database query from the logical form and optimizing it,

1Often a criticism of DCG is made that because of the standard form of compilation into

Prolog, DCG cannot handle left-recursive rules. This is actually misleading. The formalism itself

can of course state left-recursive rules with no difficulty. Furthermore, compilation techniques

(such as the BUP method (Matsumoto et al., 1983)) exist that can compile DCG into Prolog in

such a way that enables left-recursive rules to be handled.

4.5. LEXICAL-FUNCTIONAL GRAMMAR 39

and retrieving the answer from a database in a matter of hundreds of millisec-

onds. Few if any of the current natural-language systems can match it in pure

speed and performance. Second, because of the tight relationship between

DCG and Prolog, DCG grammars can be easily integrated with programs writ-

ten in Prolog. Consequently, integrating a DCG natural-language system with

some other program, say, a database or expert system, can be quite straight-

forward. Finally, the human-engineering problems associated with the linear

order and arity requirements of term unification are not terribly burdensome for

small to medium-sized grammars. Thus, for the rapid development of simple

and efficient natural-language systems, DCG can be the formalism of choice.

4.5. Lexical-Functional Grammar

In this section and the next we discuss two unification-based formalisms that

were designed from a different perspective—as linguistic theories rather than

tools. The first one, lexical-functional grammar, was developed as a theory of

language with special emphasis on the mental representation of grammatical

constructs, and on universal constraints on natural languages. LFG takes as

primitive a notion of grammatical function; its style of analysis is delineated

first by formal extensions that facilitate such a functional type of linguistic

encoding, and second by a substantive theory of linguistic universals that are

stated not as constraints on the formalism, but as universal claims about lan-

guages.

Bresnan (1982) has presented the LFG formalism and its extensive lin-

guistic motivation. We merely discuss some of the formal highlights and de-

scribe their usage in lexical-functional grammars.

4.5.1. Notational Differences. First, we present some relatively minor

notational changes. In place of “names” for the various constituents in rules

and their paired feature structures (called f-structures in LFG and in the re-

mainder of this section), LFG uses syntactic metavariables notated as arrows.

Associated with a constituent in a rule, say the NP in R1, a unification such

as (↑ subj) =↓ would correspond to the PATR-II unification 〈S subj〉 = 〈NP〉.

That is, the ↑ refers to the parent f-structure and the ↓ refers to the f-structure

of the child with which the unification is associated. Thus, our rule R1 might

be expressed in LFG as

S→ NP VP

(↑ head subj) = (↓ head) (↑ head) = (↓ head)
(R1)

40 4. EXTENDED FORMALISMS

Here again, we can write such a rule much more effectively by making

use of some additional differences in LFG. The f-structures associated with

constituents are not thought of as including the category information (as they

are in the earlier formalisms). Alternatively, we can view the metavariables ↑

and ↓ as only referring to the noncategorial part of the information structure

associated with the constituent. Thus, we have no need for distinguishing cat

from head features. We can simply write

S→ NP VP

(↑ subj)=↓ ↑=↓
(R1)

4.5.2. Semantic Forms. One limitation of not including category infor-

mation in f-structures is that a grammar cannot use this information in, say,

subcategorization. In LFG, this is considered an advantage and licenses the

addition of a special feature that handles both subcategorization and predicate-

argument structure (similar to the constructed logical form of sample grammar

three). This feature pred takes a special type of value, a semantic form. Seman-

tic forms serve the purpose of the subcat list in the previous sample grammars,

or the cset and pattern features in FUG, as the repository of subcategorization

information. But they are also used to encode the predicate-argument struc-

ture. For instance, associated with a verb such as “storms” we might have the

equations

(↑ tense) = present

(↑ pred) = ‘storm〈(↑ subj)(↑ obj)〉’

The pred equation is such that it is satisfied only if

• all the grammatical functions referred to in the semantic form have

values in the f-structure (i.e., the f-structure is complete), and

• no grammatical function other than these has a value in the f-

structure (i.e., the f-structure is coherent).

Several comments are appropriate at this point. First, we require these

conditions only of the final f-structure. Thus the coherence and completeness

conditions play much the same role as the ANY of FUG. Second, this defini-

tion presupposes the notion of grammatical function. LFG postulates that a

certain finite set of features constitutes the universal set of grammatical func-

tions. Finally, observe that the semantic form contains the same information

as the logical form construction in the lexical entries of Section 3.4.3. The

4.5. LEXICAL-FUNCTIONAL GRAMMAR 41

implicit embedding of semantic forms can, therefore, give us a representation

of predicate-argument structure.

Thus the semantic-form value can be thought of as a compact way of

representing subcategorization and semantic information. It leads to a partic-

ular style of analysis prevalent in LFG, one that involves subcategorization by

grammatical function. The motivation for this style of analysis is based on

arguments concerning linguistic universals that lie outside the scope of this

introduction.

4.5.3. Other Devices. LFG contains many other devices that facilitate

various linguistic analyses. Among these are

• constraint equations which, like ANY, are used to guarantee a value

for a feature without specifying that value,

• set values which allow features to take sets of feature structures as

their values,

• disjunction,

• regular expressions in the context-free skeleton,

• long-distance metavariables used in the analysis of Wh-movement

and other unbounded dependencies,

• lexical rules for stating lexical generalizations about related words.

Conversely, LFG is restricted by a series of formal constraints, in addition

to the constraints of the substantive theory. Constraints include

• off-line parsability, which disallows vacuous derivations in the

context-free skeleton (thereby making the formalism decidable in

the sense of complexity theory; see Section 5.1),

• functional locality, which disallows paths longer than two features

to occur in rules,

and so forth.

4.5.4. Summary. The LFG formalism departs from the basic unification-

based approach in two ways: first, by adding devices especially designed for its

lexical- and grammatical-functional-oriented style of analysis, which is the ba-

sis for its claims regarding the psychological reality and universality of lexical-

functional constructs; second, by imposing formal and substantive constraints

so as to limit the formalism’s expressive power, both computationally and lin-

guistically. LFG has provided elegant analyses of constructions in a broad

range of languages, with wildly different characteristic surface orderings, in so

42 4. EXTENDED FORMALISMS

doing revealing interesting properties of languages in general. Furthermore,

LFG researchers have investigated implementational and psycholinguistic is-

sues bearing on grammar formalisms and their relation to language-processing

systems.

4.6. Generalized Phrase Structure Grammar

The second linguistic theory in the unification-based camp is generalized

phrase structure grammar (GPSG). Like LFG, the motivation for many of the

devices and notions peculiar to GPSG arose from its practitioners’ particular

linguistic perspective and style of analysis. GPSG grew out of an attempt to re-

tain a formally restrictive system while handling a wide range of syntactic, and

especially semantic, phenomena thought not to be possible in such a restricted

system. For instance, GPSG described a method for handling unbounded de-

pendencies without resorting to transformation of structures. Though the de-

tails have changed, the basic device of this analysis, the slash category, has

persisted. With respect to semantics, GPSG built on the work of Montague,

building a semantic component directly into the formalism. Current GPSG

is considerably more complicated than the earlier systems, reflecting a more

ambitious coverage of phenomena. Nonetheless, its formal restrictiveness still

stands.

4.6.1. The Informational Domain. The GPSG informational domain is

a highly restricted variant of feature structures. Recursivity in the feature struc-

tures (or categories, as we shall call them, following the GPSG practice) is

severely constrained—so much so that there exist only a finite number of such

structures. Furthermore, categories are required to satisfy certain grammar-

dependent restrictions on the cooccurrence of features, which further limits

the permissible categories.

Unifications or identities are also severely restricted in scope. There are

no identities in rules at all. All identities follow from certain specialized prin-

ciples governing the combinatorics of features, a topic which we will discuss

in greater detail in Section 4.6.3.

4.6.2. The Combinatory Rules. GPSG grammar rules are quite different

from those in the other formalisms. They are decomposed into several types:

4.6. GENERALIZED PHRASE STRUCTURE GRAMMAR 43

• Immediate dominance (ID) rules which are similar to context-free

rules except that they specify no ordering among the various sub-

constituents.

• Metarules which capture redundancies among ID rules.2

• Linear precedence (LP) rules which specify the linear order for all

sets of sibling constituents.

• Other constraints such as lexical and phrasal default feature values,

and feature cooccurence restrictions.

The first and third of these constitute the ID/LP format for grammars.

4.6.3. Satisfying the Rules. A phrase structure tree satisfies the various

rules of a GPSG grammar according to a quite complex condition on mu-

tual satisfaction of the various rules listed above, along with certain grammar-

independent principles that must also be satisfied. These principles are the

workhorses of the theory, since they are the only source from which identifica-

tions among the various structural components of categories arise. The princi-

ples basically constitute specialized interpretations of certain special features

as to their unificational behavior, just as principles of LFG specify specialized

interpretations of the semantic forms and grammatical functions.

To give the reader an idea of the type of work the GPSG principles per-

form, we discuss just a few of them in informal terms.

• The head feature convention3 (HFC) requires identity between the

head features of a parent and its stipulated head child. Thus, since

the VP is stipulated as the head of the S, this principle does roughly

the job of the unification 〈S head〉 = 〈VP head〉 .

• The control agreement principle forces identity between the agree-

ment features of a controller and controllee under suitable (seman-

tical) definitions thereof. Such definitions would include a subject

NP and its sibling VP for instance; consequently, in tandem with

the HFC which identifies agreement features on the VP with those

of the head V, the control agreement principle induces subject-verb

agreement.

2Note that metarules in GPSG are giving way to lexical techniques. This trend has arisen

from both computational and linguistic motivations.
3The head feature convention is so called for historical reasons. It is actually not a convention

at all, although it was so construed at one point in the genesis of the theory.

44 4. EXTENDED FORMALISMS

• The foot feature principle governs identities of features involved

in long-distance dependencies. Through this principle, phenomena

such as Wh-movement, relative-clause formation and reflexivation

are modeled.

4.6.4. GPSG Semantics. Early GPSG followed the Montagovian se-

mantic tradition of separating the syntactic from the semantic information by

keeping the two portions of a grammar separate but parallel in structure. Each

syntactic rule was paired with a semantic rule, stated in an entirely separate

type of formalism, intensional logic. Through these parallel rules, every gram-

matical phrase was given a denotation, a model-theoretic entity corresponding

to the meaning of the phrase.

Current GPSG builds the denotations through one of its general princi-

ples, rather than individual rules. Although such principles are quite complex,

they lead to elegant grammars in which semantic facts arise directly from the

syntactic grammar.

4.6.5. Summary. The design of GPSG is based to a considerable degree

on a detailed analysis of natural language semantics, building on its genesis

from Montague semantics. It has been especially successful in dealing ele-

gantly with the subtleties of coordination phenomena and long-distance depen-

dencies. Moreover, all this has been accomplished within a framework that is

quite weak in mathematical expressive power; unpublished work by the author

suggests that even the most recent and elaborate version of GPSG may still be

weakly context-free in power. It is thus by far the most formally constrained

of the various unification-based formalisms.

4.7. Head Grammar and Head-Driven Phrase Structure Grammar

Two recent variants of GPSG were introduced by Pollard and subsequently

developed by him and his associates at Hewlett-Packard as a result of their

research into implementation of GPSG. The first formalism, head grammars,

augmented GPSG by adding string-combining operations which Pollard called

head-wrapping. Wrapping operations (though different from the particular for-

mulation given by Pollard) appear earlier in the Montague grammar literature

(Bach, 1980). Pollard used them to provide analyses of discontinuous con-

stituents and certain complement control phenomena.

4.8. LEXICAL ORGANIZATION 45

Based on GPSG and head grammars and inspired by FUG and LFG, head-

driven phrase-structure grammar takes further advantage of the power of uni-

fication. HPSG reverts to allowing only concatenation, replaces the metarules

of GPSG completely with lexical rules, and removes many of the restrictions

yielding finiteness of the informational domain. Pairings (called signs) of

strings and informational elements are determined by a bottom-up rule ap-

plication algorithm; the formalism is therefore inherently procedural. Compo-

nents of the algorithm correspond more or less closely to principles of GPSG,

although several major differences in analysis should be noted. Paramount

among these are the treatments of subcategorization and semantics, which,

though notationally quite different, are remarkably similar in spirit to the anal-

ysis presented in the third sample grammar.

4.8. Lexical Organization

We return now to the issue raised in Section 3.4.5 concerning techniques for or-

ganizing lexical information. Recall that many of the formalisms discussed in

this paper favor analyses that are lexically oriented—that is, they have simple

rules of combination operating on lexical items with quite complex associated

information structures. In such a case, the ability to organize the lexicon in

such a way as to remove redundancies and encode generalizations is especially

important. One need only refer to the lexical entries used in the third sample

grammar to convince oneself that such techniques are indeed necessary.

We will concentrate on three quite general methods used frequently in

these formalisms for encoding lexical generalizations: simple inheritance, de-

fault inheritance, and transformation of lexical information. A fourth sample

grammar listed in the appendix demonstrates the use of these techniques within

the PATR-II Experimental System.4

4.8.1. Simple Inheritance. Lexical entries often share much common

structure. For instance, all verbs in our sample grammars share the follow-

ing feature structure information:
[

cat: v
]

(Dv)

Furthermore, all transitive verbs share this additional information:

4Note that in this grammar, unlike the previous grammars, the subcategorization frame is

ordered with the subject first, rather than last. This aids the definition of various templates and

lexical rules.

46 4. EXTENDED FORMALISMS





















































subcat:













































first:
[

cat: NP
]

rest:





















first:
[

cat: NP
]

rest: end





















































































































(Dtrans)

Presumably we should like to eliminate this redundancy by merely asserting

that a particular lexical item is transitive while having the information in Dtrans

stated only once as a general property of transitives. Furthermore, since all

transitives are verbs, we should not have to include this fact in the lexicon,

but rather, should inherit the verbal information Dv automatically. In PATR-

II, this process of defining useful lexical abstractions of feature structures is

manifested in the ability to define lexical templates, which are name-bearing

feature structures that can be used in lexical entries. For instance, we might

have a template called Verb corresponding to Dv. This could be defined in the

following way:

Let Verb be 〈cat〉 = V.

Similarly, the transitive notion can be abstracted as a template Transitive.

Let Transitive be 〈subcat first cat〉= NP

〈subcat rest first cat〉= NP

〈subcat rest rest〉= end

〈head trans arg1〉=〈subcat first head trans〉

〈head trans arg2〉=〈subcat rest first head trans〉.

Alternatively, we can embed the Verb template hierarchically in the Tran-

sitive template to express the notion that transitives are verbs.

Let Transitive be Verb

〈subcat first cat〉= NP

〈subcat rest first cat〉= NP

〈subcat rest rest〉= end

〈head trans arg1〉=〈subcat first head trans〉

〈head trans arg2〉=〈subcat rest first head trans〉.

4.8. LEXICAL ORGANIZATION 47

sleeps storms

ThirdS ing Intransitive Transitive

ThirdPerson S ingular Finite MainVerb

Verb

F 1

Since templates can be defined hierarchically, that is, in terms of other

templates, this leads to a structure-sharing lexical organization.5 In essence,

we are building an inheritance hierarchy akin to those employed in many AI

knowledge representation systems. We can make this similarity more explicit

by using for our lexicon a node and arc notation familiar from AI work on

semantic nets. Suppose we decide that at least part of our lexicon should be

organized as in Figure 1. This would be accomplished with the following

template definitions and lexical entries.

Let Verb be 〈cat〉 = v.

Let Finite be Verb

〈head form〉 = finite.

Let ThirdPerson be 〈subcat first head agreement person〉 = third.

Let Singular be 〈subcat first head agreement number〉 = singular.

Let ThirdSing be ThirdPerson

Singular.

Let MainVerb be Verb

〈head aux〉 = false.

5We are using the term “structure-sharing” here in a manner different from its use in terms

like “structure-sharing dag representation methods,” e.g., (Pereira, 1985; Karttunen and Kay,

1985).

48 4. EXTENDED FORMALISMS

Let Transitive be MainVerb

〈subcat first cat〉= NP

〈subcat rest first cat〉= NP

〈subcat rest rest〉= end

〈head trans arg1〉=〈subcat first head trans〉

〈head trans arg2〉=〈subcat rest first head trans〉.

Let Intransitive be MainVerb

〈subcat first cat〉= NP

〈subcat rest〉= end

〈head trans arg1〉=〈subcat first head trans〉.

storms 7−→ Transitive

ThirdSing

〈head trans pred〉 = storm.

sleeps 7−→ Intransitive

ThirdSing

〈head trans pred〉 = sleep.

With these definitions, the simple lexical entries for “storms” and “sleeps”

suffice to derive all of the feature structure information displayed in the earlier

complex feature structures for these words. For instance, since “storms” in-

cludes the template ThirdSing, which itself includes Finite, in turn requiring

that the head’s form feature be finite, the feature structure for the lexical en-

try will itself include this information; it is “inherited,” so to speak, from the

Finite template. The great power of templates and inheritance for simplifying

lexicons is readily apparent.

Note the character of this organization. Just as in typical AI representation

systems, the concepts defined are organized from most to least specific. The

word “storms” is a type of third-person, singular verb which is a subclass of

finite verbs, the latter itself a subclass of verbs in general.

Furthermore, a lexical entry or template can inherit information from more

than one other template—that is, we allow multiple inheritance. One inter-

esting special case of this phenomenon occurs in the network just defined.

“Storms” inherits the Verb template because it is finite, but also because it is

transitive and therefore a main verb. Since the information in all the various

templates is combined by unification, such multiple inheritance of a single

property presents no problems. Presumably, if contradictions were to arise

in the unification of the assorted pieces of inherited information, the lexical

4.8. LEXICAL ORGANIZATION 49

entry would simply be disallowed. Note that, because of the order indepen-

dence of unification, the order in which we choose to traverse this network of

inheritance in constructing the lexical entry’s feature structure is completely

immaterial; all traversals will generate the same feature structure. In the next

section, however, we will see how this phenomenon of multiple inheritance

can cause problems when information-combining methods other than unifica-

tion are used.

Though the PATR-II system of templates first embodied an inheritance

network organization for lexicons within a unification-based framework, it was

the HPSG group at Hewlett-Packard that was most explicit in advocating such

an approach (Flickinger et al., 1985). Their use of the HPRL knowledge rep-

resentation language led directly to an inheritance-based organization for the

HPSG lexicon. Besides simple inheritance, however, they also took advantage

of another standard feature of knowledge representation languages—default

inheritance.

4.8.2. Default Inheritance. We often want a lexical entry to inherit most,

but not all, of the information associated with some node in the hierarchy.

The simple inheritance method discussed in the last section does not allow for

exceptions to be easily encoded. For instance, let us suppose that, rather than

specifying in every verb entry whether the subject of the verb should be in

the nominative or accusative case (depending on whether the verb is finite or

nonfinite, respectively) we wanted to state the general fact that subjects of all

except finite verbs are accusative.6 We might try to do this with the following

new templates.

Let Verb be 〈cat〉 = v

〈subcat first head agreement case〉 = accusative.

Let Finite be Verb

〈subcat first head agreement case〉 = nominative.

But this merely leads to contradiction in the case of finite verbs. What we need

instead is some way of defining a precedence of a certain segment of informa-

tion over others. In default inheritance networks, the precedence is typically

defined in the following manner: information lower in the network has prece-

dence over information in higher nodes. Thus, if a lexical entry inherits the

6This example is taken from Flickinger et al. (1985), and is not being proposed as the pre-

ferred analysis of the phenomenon.

50 4. EXTENDED FORMALISMS

Verb template, in general it will take accusative subjects, unless some nodes

lower in the template (such as Finite) requires otherwise. This approach to

inheritance is utilized extensively by the builders of the HPSG lexicon.

A different approach to assigning precedence is allowed (albeit used spar-

ingly) in the PATR-II lexical organization. The PATR-II Experimental System

allows a method of combining structures by overwriting in addition to normal

unification. Overwriting is a noncommutative operation akin to destructive

unification except that, in the case of unification“clashes”, one of the operands

(say, the rightmost) is given precedence. Thus, unlike unification, overwriting

never fails. For the example at hand, we could use overwriting in the tem-

plate Finite to override the assignment of accusative case to the subject. The

following template definition, which uses the symbol “=>” for overwriting,

accomplishes this.

Let Finite be Verb

〈head agr case〉 => nominative.

By using overwriting, or similar nonmonotonic operations, the effect of default

feature inheritance (and many other even more unorthodox mechanisms) can

be achieved in a lexicon. The cost of such a move is great, however, because

the use of overwriting eliminates the order independence that is so advanta-

geous a property in a formalism.

With either type of inheritance exception mechanism, a problem arises

because of the interaction of exceptions and multiple inheritance. When a

value is inherited through two chains of inheritance, but one of the chains

overrides the value (either because a lower node has specified a different value

or as a result of explicit overwriting), there is a question as to which (if either)

of the two values to use. For example, the verb “storms” inherits accusative

case for its subject from the Verb template in two ways—once through the

Intransitive template, and again through its inclusion of the template Finite; in

the latter instance, however, the template overrides the accusative specification

with nominative case. Now, which of the various possible values—accusative

or nominative—should be assigned as the case of the subject, or alternatively,

should the conflict be construed as a failure of unification causing failure?

The answer depends roughly on the order in which the various constraints

are imposed, whether or not both applications of the Verb template precede

application of the Finite template. Put another way, the solution rests on as-

signing particular precedences to the various nodes in the hierarchy. Since

4.8. LEXICAL ORGANIZATION 51

questions of just this sort have been wrestled with in the literature on default

reasoning and default logics, we will not discuss the issue further here except

to raise it as a relevant issue in the design of lexical mechanisms.

4.8.3. Transformation of Lexical Structure. Occasionally a more pow-

erful mechanism is needed to represent systematic relationships among feature

structures in the lexicon. Rather than merely amalgamating common elements

of substructure, we often want to perform more complex transformations of

feature structures in order to relate more disparate entries. There is a long

tradition in linguistics of using lexical rules for just this purpose.

Within the context of unification-based approaches, LFG pioneered the

use of lexical rules to express systematic relations among lexical items.7 LFG’s

lexical rules are typically expressed as relations among (or transformations of)

semantic forms (as described in Section 4.5.2). For instance, the LFG lexical

rule for English passive8 would be

(SUBJ)→ φ/(BY OBJ)

(OBJ)→ (SUBJ)

which is intended to mean that the semantic form associated with an active and

a corresponding passive are related by a transformation that takes the active

form’s subject into the by-object of the passive, and the object into the passive’s

subject. Alternatively, the subject of the active can be eliminated entirely in

the passive. Thus, LFG’s relation-changing lexical rules are one example of a

method of transforming lexical structure for the purpose of stating systematic

relationships among feature structures.

Lexical rules in the PATR-II system are construed as general transforma-

tions on feature structures, expressed in terms of unificational constraints on

an input structure and its transformed output. For instance, the agentless pas-

sive rule of LFG would be described as a PATR-II lexical rule in the following

manner:
Define AgentlessPassive as 〈out subj〉 = 〈in obj〉

〈out obj〉 = nil.

7Often, in the LFG literature, these are referred to as lexical redundancy rules to highlight

the fact that they are not applied in the syntactic derivation of sentences, but are merely statements

expressing “patterns of redundancy that obtain among large but finite classes of lexical entries.”

(Kaplan and Bresnan, 1983, page 180)
8We follow the analysis of Kaplan and Bresnan (1983, page 9).

52 4. EXTENDED FORMALISMS

For the lexical entries of the sample grammars (especially the fourth, in which

the subcategorization frame lists the subject first) a passive lexical rule might

be expressed as follows:

Define AgentlessPassive as 〈out cat〉=〈in cat〉

〈out subcat〉=〈in subcat rest〉

〈out head〉=〈in head〉

〈out head form〉=>〈passiveparticiple〉.

This rule could be used to build a passive lexical entry referred to as out from

an active entry in such that the category feature information remains the same

but the subcategorization frame has been modifed to remove the subject. The

head feature information is also maintained, except (note the use of overwrit-

ing) that the form of the verb is marked as passive participle.

The HPSG system also makes extensive use of lexical rules as transfor-

mations on lexical information. Flickinger et al. (1985) discuss their particular

formulation.

Once again, it should be noted that the introduction of lexical rules into

the process of determining lexical information for a specific lexical item makes

critical use of the notion of order of application, since arbitrary transformations

of this sort are of course highly sensitive to the sequence in which they are

applied.

4.8.4. Other Techniques of Lexical Organization. Other techniques

have been proposed for more succinctly stating the lexical information associ-

ated with particular words in a language. Among these are

• Abbreviatory conventions, such as the GPSG use of V[3] to stand for

the more verbose [[N−][V+][SUBCAT3]].

• Feature specification defaults, a variant of default feature inheritance

used in the most recent version of GPSG (Gazdar et al., 1985), spec-

ify default values for features that receive no value by other means.

• Feature cooccurrence restrictions state constraints on the acceptable

configurations of feature information and, as such, can serve to ab-

breviate lexical entries.

4.9. OTHER EXTENSIONS OF FORMALISMS 53

4.9. Other Extensions of Formalisms

Various other devices have been proposed for increasing the expressivity

of formalisms. For instance, researchers have proposed augmenting unifica-

tion with other operations or algebraic relations. In addition to disjunction

(see Section 4.3.2), the following devices have been discussed at one time or

another:

• Negation allows the grammar to specify that a feature does not have

a particular value or type of value.

• Priority union and the closely related overwriting operations allow

aggregation of incompatible information, using some suitable cri-

terion for choosing which of two incompatible substructures takes

precedence. The former is a recent addition to LFG.

• Variable labels, in which a feature name is itself the value of another

feature, might be used. LFG employs this capability for certain anal-

yses of free word order.

• Cyclicity of feature structures permits a structure to have itself as a

substructure. Prolog-II (Colmerauer, 1982) and certain PATR-II im-

plementations, for instance, allow cyclic terms and dags. They have

been proposed for use in analyzing relative clauses, and can perform

the same tasks as variable labels in the free-word-order analyses.

• Generalization is the dual of unification. The generalization of two

feature structures is the most specific feature structure subsumed by

both. Related devices have been proposed in coordination analyses

in GPSG (Sag et al., 1984).

Many other extensions to unification-based formalisms have been proposed.

Consequently, certain questions arise regarding how to evaluate the various

alternatives. What is important to keep in mind when looking at the possible

devices and techniques? This brings us to some concluding remarks about the

principal issues in grammar formalisms that are raised by the unification-based

approach.

CHAPTER 5

Conclusions

5.1. Emergent Issues Concerning Formalisms

Emerging from these formalisms are several important general issues con-

cerning unification-based formalisms. We touch briefly on some of these issues

here.

• Linguistic motivation: Chief among the issues engendered by the

detailed makeup of grammar formalisms is the linguistic motivation

for the various components of the systems. Regardless of whether

the formalism is part of a linguistic theory or a linguistic tool, the

structures and operations used should be those appropriate for stating

linguistic information.

• Declarativeness: Certain operations or combinations of operations

embedded in a formalism admit of no declarative interpretation. In

such a case, the definition of the language admitted by a grammar

is inherently procedural. Such cases are often quite subtle to detect,

requiring a well-worked-out semantics for the formalism.1

• Nonmonotonicity: Operations that are used for default behavior of

some sort appear in many of the formalisms (e.g., constraint equa-

tions, default feature values, overwriting, priority union, ANY). A

growing body of linguistic evidence seems to show that such devices

are needed for certain analyses. Many questions concerning the in-

terchangeability, expressivity, and necessity of these devices remain

unresolved.

1This use of the word “semantics” should not be confused with the more common usage de-

noting that portion of a grammar concerned with the meaning of object language sentences. Here

we are concerned with the meaning of metalanguage sentences, i.e., of the grammars themselves.

Pereira and the author (1984) discuss semantics for grammar formalisms in more detail.

55

56 5. CONCLUSIONS

• Mathematical power: In addition to the expressive power of the for-

malism, precise mathematical measures of power taken from com-

plexity theory are pertinent to the evaluation of formalisms. FUG

and PATR-II are the most powerful of the formalisms in this highly

idealized sense. They can both characterize any recursively enumer-

able language. Thus, the recognition problem for these formalisms

is undecidable. LFG recognition is decidable because of the off-

line parsability constraint, but is NP-complete. GPSG, because of

its equivalence to context-free systems, is polynomially recogniz-

able, though exponential amounts of preprocessing may be neces-

sary. Various other results are known with respect to the mathemati-

cal complexity of the various formalisms. Although such metrics are

not very accurate barometers of actual performance characteristics in

any sense, they can serve as a first approximation in characterizing

expressive power.

• Algebraic properties: Understanding the algebraic properties of the

various devices is essential to a full understanding of the semantics

of a formalism. For instance, the algebraic notion of distributivity is

closely related to the issue of declarativeness. Since generalization

and unification are not distributive with respect to each other, the or-

der of their application is important, and thus temporality enters the

formalism. An understanding of the underlying algebra, therefore,

is vital.

• Lexical organization: One of the chief issues separating many of the

formalisms discussed here has to do with their organization of the

lexicon. Since the analyses in these formalisms seem to be heading

in a more lexical direction, this topic is of increasing interest.

• Notation: Which of the differences among the formalisms are nota-

tional rather than formally essential? Recent work in the area has

tended to explicate this question more clearly, and many of the dif-

ferences among the formalisms are now seen as notational. Note

that this does not make such differences any less important, but it

does provide a better understanding of the source of power in the

formalisms: the notation or the semantics.

5.2. A SUMMARY 57

5.2. A Summary

Research pursuing these various issues in linguistic formalism design

is delineating the similarities and differences among the various unification-

based formalisms. Linguistic research, meanwhile, is quite concerned about

differentiating the various formal constructs with respect to their linguistic

basis. Natural-language-processing research is also being conducted, aimed

at providing an understanding of the computational ramifications of design

issues. Thus, from a variety of areas, the distinctions among the various

unification-based formalisms is being tracked.

More surprising, however, is the fundamental observation that from a

broad range of research directions—from varied work within linguistics, ar-

tificial intelligence, and computer science—researchers are converging upon

a single approach to grammar of great flexibility and power, an approach in

which declarative and procedural interpretations of grammars can coexist. The

foundational issues in unification-based formalisms are only now beginning to

be explored, but the efficacy of unification as a tool for linguistic analysis and

computation seems irrefutable.

APPENDIX A

The Sample PATR-II Grammars

The following are the machine-readable versions of the grammars presented in

Section 3.4.

A.1. Sample Grammar One

;;; -*- Mode: PATR -*-

;;;===

;;; Demonstration Grammar One

;;;

;;; Includes: subject-verb agreement

;;;===

Parameter: Start symbol is S.

Parameter: Restrictor is <cat>

<head form>.

Parameter: Attribute order is cat lex sense head

subject

form agreement

person number gender

s np vp v.

;;;===

;;; Grammar Rules

;;;===

Rule |sentence formation|

59

60 A. THE SAMPLE PATR-II GRAMMARS

S --> NP VP:

<S head> = <VP head>

<VP head subject> = <NP head>.

Rule |trivial verb phrase|

VP --> V:

<VP head> = <V head>.

;;;===

;;; Lexicon

;;;===

Lexicon root.

Word uther:

<cat> = NP

<head agreement gender> = masculine

<head agreement person> = third

<head agreement number> = singular.

Word knights:

<cat> = NP

<head agreement gender> = masculine

<head agreement person> = third

<head agreement number> = plural.

Word sleeps:

<cat> = V

<head form> = finite

A.1. SAMPLE GRAMMAR ONE 61

<head subject agreement person> = third

<head subject agreement number> = singular.

Word sleep:

<cat> = V

<head form> = finite

<head subject agreement number> = plural.

62 A. THE SAMPLE PATR-II GRAMMARS

A.2. Sample Grammar Two

;;; -*- Mode: PATR -*-

;;;===

;;; Demonstration Grammar Two

;;;

;;; Includes: subject-verb agreement

;;; Includes: complex subcategorization

;;;===

Parameter: Start symbol is S.

Parameter: Restrictor is <cat>

<head form>.

Parameter: Attribute order is cat lex sense head

subcat first rest

form agreement

person number gender

s np vp vp_1 vp_2 vp_3 v.

;;;===

;;; Grammar Rules

;;;===

Rule |sentence formation|

S --> NP VP:

<S head> = <VP head>

<S head form> = finite

<VP subcat first> = <NP>

<VP subcat rest> = end.

Rule |trivial verb phrase|

A.2. SAMPLE GRAMMAR TWO 63

VP --> V:

<VP head> = <V head>

<VP subcat> = <V subcat>.

Rule |complements|

VP_1 --> VP_2 X:

<VP_1 head> = <VP_2 head>

<VP_2 subcat first> = <X>

<VP_2 subcat rest> = <VP_1 subcat>.

;;;===

;;; Lexicon

;;;===

Lexicon root.

Word uther:

<cat> = NP

<head agreement gender> = masculine

<head agreement person> = third

<head agreement number> = singular.

Word cornwall:

<cat> = NP

<head agreement gender> = masculine

<head agreement person> = third

<head agreement number> = singular.

Word knights:

<cat> = NP

64 A. THE SAMPLE PATR-II GRAMMARS

<head agreement gender> = masculine

<head agreement person> = third

<head agreement number> = plural.

Word sleeps:

<cat> = V

<head form> = finite

<syncat first cat> = NP

<syncat first head agreement person> = third

<syncat first head agreement number> = l singular

<subcat rest> = end.

Word sleep:

<cat> = V

<head form> = finite

<subcat first cat> = NP

<subcat first head agreement number> = plural

<subcat rest> = end.\break

Word sleep:

<cat> = V

<head form> = nonfinite

<subcat first cat> = NP

<subcat rest> = end.

Word storms:

<cat> = V

<head form> = finite

<subcat first cat> = NP

<subcat rest first cat> = NP

<subcat rest first head agreement person> = l third

<subcat rest first head agreement number> = l singular

A.2. SAMPLE GRAMMAR TWO 65

<subcat rest rest> = end.

Word stormed:

<cat> = V

<head form> = presentparticiple

<subcat first cat> = NP

<subcat rest first cat> = NP

<subcat rest rest> = end.

Word storm:

<cat> = V

<head form> = nonfinite

<subcat first cat> = NP

<subcat rest first cat> = NP

<subcat rest rest> = end.

Word has:

<cat> = V

<head form> = finite

<subcat first cat> = VP

<subcat first head form> = presentparticiple

<subcat first syncat rest> = end

<subcat first syncat first> = <subcat rest l first>

<subcat rest first cat> = NP

<subcat rest first head agreement number> = l singular

<subcat rest first head agreement person> = l third

<subcat rest rest> = end.

Word have:

<cat> = V

<head form> = finite

<subcat first cat> = VP

66 A. THE SAMPLE PATR-II GRAMMARS

<subcat first head form> = presentparticiple

<subcat first syncat rest> = end

<subcat first syncat first> = <subcat rest l first>

<subcat rest first cat> = NP

<subcat rest first head agreement number> = l plural

<subcat rest rest> = end.

Word persuades:

<cat> = V

<head form> = finite

<subcat first cat> = NP

<subcat rest first cat> = VP

<subcat rest first head form> = infinitival

<subcat rest first syncat rest> = end

<subcat rest first syncat first> = <subcat l first>

<subcat rest rest first cat> = NP

<subcat rest rest first head agreement l number> = singular

<subcat rest rest first head agreement l person> = third

<subcat rest rest rest> = end.

Word to:

<cat> = V

<head form> = infinitival

<subcat first cat> = VP

<subcat first head form> = nonfinite

<subcat first syncat rest> = end

<subcat first syncat first> = <subcat rest l first>

<subcat rest first cat> = NP

<subcat rest rest> = end.

A.3. SAMPLE GRAMMAR THREE 67

A.3. Sample Grammar Three

;;; -*- Mode: PATR -*-

;;;===

;;; Demonstration Grammar Three

;;;

;;; Includes: subject-verb agreement

;;; complex subcategorization

;;; logical form construction

;;;===

Parameter: Start symbol is S.

Parameter: Restrictor is <cat>

<head form>.

Parameter: Translation at <head trans>.

Parameter: Attribute order is cat lex sense head

subcat first rest

form agreement

person number gender

trans pred arg1 arg2

s np vp vp_1 vp_2 vp_3 v.

;;;===

;;; Grammar Rules

;;;===

Rule |sentence formation|

S --> NP VP:

<S head> = <VP head>

<S head form> = finite

68 A. THE SAMPLE PATR-II GRAMMARS

<VP subcat first> = <NP>

<VP subcat rest> = end.

Rule |trivial verb phrase|

VP --> V:

<VP head> = <V head>

<VP subcat> = <V subcat>.

Rule |complements|

VP_1 --> VP_2 X:

<VP_1 head> = <VP_2 head>

<VP_2 subcat first> = <X>

<VP_2 subcat rest> = <VP_1 subcat>.

;;;===

;;; Lexicon

;;;===

Lexicon root.

Word uther:

<cat> = NP

<head agreement gender> = masculine

<head agreement person> = third

<head agreement number> = singular

<head trans> = uther.

Word cornwall:

<cat> = NP

<head agreement gender> = masculine

A.3. SAMPLE GRAMMAR THREE 69

<head agreement person> = third

<head agreement number> = singular

<head trans> = cornwall.

Word knights:

<cat> = NP

<head agreement gender> = masculine

<head agreement person> = third

<head agreement number> = plural

<head trans> = knights.\break

Word sleeps:

<cat> = V

<head form> = finite

<subcat first cat> = NP

<subcat first head agreement person> = third

<subcat first head agreement number> = singular

<subcat rest> = end

<head trans pred> = sleep

<head trans arg1> = <subcat first head trans>.

Word sleep:

<cat> = V

<head form> = finite

<subcat first cat> = NP

<subcat first head agreement number> = plural

<subcat rest> = end

<head trans pred> = sleep

<head trans arg1> = <subcat first head trans>.

Word sleep:

<cat> = V

70 A. THE SAMPLE PATR-II GRAMMARS

<head form> = nonfinite

<subcat first cat> = NP

<subcat rest> = end

<head trans pred> = sleep

<head trans arg1> = <subcat first head trans>.

Word storms:

<cat> = V

<head form> = finite

<subcat first cat> = NP

<subcat rest first cat> = NP

<subcat rest first head agreement person> = l third

<subcat rest first head agreement number> = l singular

<subcat rest rest> = end

<head trans pred> = storm

<head trans arg1> = <subcat rest first head l trans>

<head trans arg2> = <subcat first head trans>.

Word stormed:

<cat> = V

<head form> = presentparticiple

<subcat first cat> = NP

<subcat rest first cat> = NP

<subcat rest rest> = end

<head trans pred> = storm

<head trans arg1> = <subcat rest first head l trans>

<head trans arg2> = <subcat first head trans>.

Word storm:

<cat> = V

<head form> = nonfinite

<subcat first cat> = NP

<subcat rest first cat> = NP

A.3. SAMPLE GRAMMAR THREE 71

<subcat rest rest> = end

<head trans pred> = storm

<head trans arg1> = <subcat rest first head l trans>

<head trans arg2> = <subcat first head trans>.\break

Word has:

<cat> = V

<head form> = finite

<subcat first cat> = VP

<subcat first head form> = presentparticiple

<subcat first syncat rest> = end

<subcat first syncat first> = <subcat rest l first>

<subcat rest first cat> = NP

<subcat rest first head agreement number> = l singular

<subcat rest first head agreement person> = l third

<subcat rest rest> = end

<head trans pred> = perfective

<head trans arg1> = <syncat first head trans>.

Word have:

<cat> = V

<head form> = finite

<subcat first cat> = VP

<subcat first head form> = presentparticiple

<subcat first syncat rest> = end

<subcat first syncat first> = <subcat rest l first>

<subcat rest first cat> = NP

<subcat rest first head agreement number> = l plural

<subcat rest rest> = end

<head trans pred> = perfective

<head trans arg1> = <subcat first head trans>.

Word persuades:

72 A. THE SAMPLE PATR-II GRAMMARS

<cat> = V

<head form> = finite

<subcat first cat> = NP

<subcat rest first cat> = VP

<subcat rest first head form> = infinitival

<subcat rest first subcat rest> = end

<subcat rest first subcat first> = <subcat l first>

<subcat rest rest first cat> = NP

<subcat rest rest first head agreement l number> = singular

<subcat rest rest first head agreement l person> = third

<subcat rest rest rest> = end

<head trans pred> = persuade

<head trans arg1> = <subcat rest rest first l head trans>

<head trans arg2> = <subcat first head trans>

<head trans arg3> = <subcat rest first head l trans>.

Word to:

<cat> = V

<head form> = infinitival

<subcat first cat> = VP

<subcat first head form> = nonfinite

<subcat first subcat rest> = end

<subcat first subcat first> = <subcat rest l first>

<subcat rest first cat> = NP

<subcat rest rest> = end

<head trans> = <subcat first head trans>.

A.4. SAMPLE GRAMMAR FOUR 73

A.4. Sample Grammar Four

;;; -*- Mode: PATR -*-

;;;===

;;; Demonstration Grammar Four

;;;

;;; Includes: subject-verb agreement

;;; complex subcategorization

;;; logical form construction

;;; lexical organization by templates

;;; and lexical rules

;;;===

Parameter: Start symbol is S.

Parameter: Restrictor is <cat>

<head form>.

Parameter: Translation at <head trans>.

Parameter: Attribute order is cat lex sense head

subcat first rest

form agreement person number gender

trans pred arg1 arg2

s np vp vp_1 vp_2 vp_3 v.

;;;===

;;; Grammar Rules

;;;===

Rule |sentence formation|

S --> NP VP:

<S head> = <VP head>

<S head form> = finite

74 A. THE SAMPLE PATR-II GRAMMARS

<VP subcat first> = <NP>

<VP subcat rest> = end.

Rule |trivial verb phrase|

VP --> V:

<VP head> = <V head>

<VP subcat> = <V subcat>.

Rule |complements|

VP_1 --> VP_2 X:

<VP_1 head> = <VP_2 head>

<VP_2 subcat first> = <VP_1 subcat first>

<VP_2 subcat rest first> = <X>

<VP_2 subcat rest rest> = <VP_1 subcat rest>.

;;;===

;;; Definitions

;;;===

Let Verb be <cat> = v.

Let Finite be Verb

<head form> = finite.

Let Nonfinite be Verb

<head form> = nonfinite.

Let ThirdPerson be <subcat first head agreement person> = third.

Let Singular be <subcat first head agreement number> = singular.

Let Plural be <subcat first head agreement number> = plural.

A.4. SAMPLE GRAMMAR FOUR 75

Let ThirdSing be Finite

ThirdPerson

Singular.

Let MainVerb be Verb

<head aux> = false.

Let Transitive be <subcat first cat> = NP

<subcat rest first cat> = NP

<subcat rest rest> = end

<head trans arg1> = <subcat first head trans>

<head trans arg2> = <subcat rest first head trans>.

Let Intransitive be MainVerb

<subcat first cat> = NP

<subcat rest> = end

<head trans arg1> = <subcat first head trans>.

Let Raising be <subcat first cat> = NP

<subcat rest first cat> = VP

<subcat rest first subcat rest> = end

<subcat rest first subcat first> = <subcat first>

<subcat rest rest> = end.

Define AgentlessPassive as <out cat> = <in cat>

<out subcat> = <in subcat rest>

<out head> = <in head>

<out head form> => passiveparticiple.

;;;===

;;; Lexicon

;;;===

Lexicon root.

76 A. THE SAMPLE PATR-II GRAMMARS

Word uther:

<cat> = NP

<head agreement gender> = masculine

<head agreement person> = third

<head agreement number> = singular

<head trans> = uther.

Word cornwall:

<cat> = NP

<head agreement gender> = masculine

<head agreement person> = third

<head agreement number> = singular

<head trans> = cornwall.

Word knights:

<cat> = NP

<head agreement gender> = masculine

<head agreement person> = third

<head agreement number> = plural

<head trans> = knights.

Word sleeps: Intransitive ThirdSing

<head trans pred> = sleep.

Word sleep: Intransitive Plural

<head trans pred> = sleep.

Word sleep: Intransitive Nonfinite

<head trans pred> = sleep.

Word storms: Transitive ThirdSing

<head trans pred> = storm.

A.4. SAMPLE GRAMMAR FOUR 77

Word stormed: Transitive AgentlessPassive

<head trans pred> = storm.

Word storm: Transitive Nonfinite

<head trans pred> = storm.

Word is: Raising ThirdSing

<subcat rest first head form> = passiveparticiple

<head trans> = <subcat rest first head trans>.

APPENDIX B

The Literature

This appendix attempts to point out certain key works in the various areas

that touch upon the topics of this paper.

B.1. General Papers

The general considerations of Chapter 2 are described more fully by the

author (Shieber, 1985a); the cited paper forms the basis of that chapter. The

semantics of unification-based grammar formalisms in general is discussed by

Pereira and the author (Pereira and Shieber, 1984).

B.2. Background and Overviews of the Formalisms

LFG has been canonized in Bresnan’s book The Mental Representation of

Grammatical Relations (1982). Details of the formalism itself are presented

in Chapter 4 of that book. FUG is presented in several works by Kay, most

accessibly, “Unification Grammar” (1983). Woods (1970) describes ATNs,

from which LFG was partially developed.

Colmerauer describes his Q-systems (1970) and the later metamorpho-

sis grammars (1978). Prolog and DCGs are discussed in an introductory text

by Clocksin and Mellish (1981). Colmerauer and Roussel are the respective

authors of two classic works (Colmerauer et al., 1973; Roussel, 1975). More

extensive discussions of DCG and extraposition grammars are given by Pereira

in his thesis (1983). Other DCG-related formalisms are described by McCord

and Dahl (McCord, 1980; Dahl and Abramson, 1984; Dahl and McCord, 1983)

and in works cited therein.

Early GPSG was described in the difficult to obtain “English as a Context-

free Language” (Gazdar, 1979) and in several subsequent papers, now consid-

ered out of date by the authors. It is best introduced in a series of papers

by Gazdar (Gazdar, 1982; Gazdar et al., 1982; Gazdar, 1981). The canonical

work on the current formalism is the recently published Generalized Phrase

79

80 B. THE LITERATURE

Structure Grammar (Gazdar et al., 1985). A simpler introduction to the cur-

rent formalism is given by Sag et al. (1984). Pollard’s head grammars are first

described in his Ph.D. thesis (1984). The later HPSG formalism is documented

in an unpublished note (Pollard, 1985a) and a short paper (Pollard, 1985b).

DIALOGIC, the precursor of PATR, is described by Robinson (1982).

Rosenschein and the author present the original PATR formalism (Rosenschein

and Shieber, 1982). PATR-II is introduced in an SRI report (Shieber, 1984) and

further discussed in a recent compilation of papers (Shieber et al., 1984).

B.3. Handling Specific Linguistic Phenomena

The LFG volume (Bresnan, 1982) presents detailed analyses of a wide

range of phenomena from radically differing languages. Chapters 1 and 5 pro-

vide an introduction to the style of analysis upon which LFG is based. The

monumental bibliography of works dealing with relational grammar (Dubin-

sky and Rosen, 1983) contains many references to papers in the LFG literature

and more using the shared tenet with relational grammar of grammatical func-

tions as primitives.

Since the GPSG volume (Gazdar et al., 1985) concentrates primarily on

English linguistics, more detailed analysis was therefore possible. Chapter 2

presents the informational domain of categories, Chapter 3 the combinatory

rules. Chapter 5 is devoted to the general principles upon which the theory is

based. Other chapters provide detailed analyses of English phenomena (espe-

cially long-distance dependencies and coordination) and semantic interpreta-

tion. For GPSG analyses of other languages, see, for instance, the compilation

Order, Concord and Constituency (Gazdar et al., 1983) and references in foot-

note 6 of the introduction to the GPSG volume (Gazdar et al., 1985).

The analysis of subcategorization, agreement, and semantics

given in Section 3.4, such as it is, has been previously presented by the

author (Shieber et al., 1983).

B.4. Related Formalisms and Languages from Computer Science

Besides the obvious connections to logic and theorem-proving research

(unification was originally discussed as a component of the resolution proce-

dure for automatic theorem-proving (rob), and this connection is still evident

in Prolog and DCG) other research from computer science bears directly on

the topic at hand.

B.5. RELATED IMPLEMENTATION TECHNIQUES 81

There is a close relationship between the type theory of computer science

and the algebraic structure of feature systems. Roughly speaking, the sim-

ilarity is between feature structures and named product types (or numbered

product types for DCG terms) with or without sum types. Reynolds (1985)

presents a good introduction to the approriate type theory, including a lucid

explanation of the differences between named and numbered products.

Building on this relationship with type theory, Ait-Kaci (1985) discusses

a calculus of syntactic types that bears a remarkable resemblance to the fea-

ture structures used in unification-based formalisms. The mathematics of sub-

sumption, unification, and other algebraic properties of his calculus are inves-

tigated in depth. The intended application of the formalism was to knowl-

edge representation—it was originally described as a generalization of Prolog

terms—but some brief natural-language examples are given by Ait-Kaci.

Cardelli (1984), in a reconstruction of object-oriented programming, pro-

poses a typing system based on named product types with sums for disjunc-

tion. This type system also bears a close resemblance to the feature structure

domains. He proposes this as a technique for modeling object classes with

multiple inheritance in a strongly typed language.

B.5. Related Implementation Techniques

Implementation of systems that use unification-based grammar for-

malisms is aided by the vast literature available from the automatic theorem-

proving and Prolog communities on implementing unification, and from the

programming language and compiler design communities on implementing

parsing algorithms.

The following research is seminal in this field. rob first discusses the use

of unification in automatic theorem-proving. Later work by Boyer and Moore

(1972) used structure sharing to improve the efficiency of unification. Nelson

and Oppen (1978) describe an algorithm for efficiently computing graph clo-

sures, with an application to solving equations of the type found in unification-

based formalisms. Their algorithm forms the basis for an implementation

of unification for LFG. Structure-sharing methods for implementing feature

structures are discussed by Karttunen and Kay (1985) and Pereira (1985). Ef-

ficient implementation of Prolog makes use of these techniques and others

developed by Warren (1983).

82 B. THE LITERATURE

Among the parsing techniques that have been modified for use in

unification-based parsing are many of the techniques designed for parsing pro-

gramming languages. The two-volume reference by Aho and Ullman (1972)

provides a complete introduction to the available techniques. Kaplan (1973)

discusses chart parsing for natural language analysis. A technique specifi-

cally for parsing unification-based formalisms has been described by the au-

thor (Shieber, 1985b). Kay (1985) discusses parsing FUG.

B.6. Implementations of Unification-Based Formalisms

Several systems implementing unification-based grammar formalisms

have been devised. The following references are to papers describing the sys-

tems themselves. A user manual for the LFG system developed at the Xerox

Palo Alto Research Center will be forthcoming from Xerox. GPSG systems

have been developed by Thompson (1981), and Evans and Gazdar (1984).

Work on the GPSG and subsequent HPSG systems at Hewlett-Packard is re-

viewed in several papers (Gawron et al., 1982; Proudian and Pollard, 1985;

Pollard and Creary, 1985). The various PATR-II systems are described in SRI

reports (Shieber et al., 1983; Shieber, 1985a). Other references to papers on

computer implementations of phrase-structure grammars of various sorts can

be found in Gazdar’s short bibliography (Gazdar, 1984).

Bibliography

.

Ades, Anthony E., and Mark J. Steedman. 1982. On the order of words. Lin-

guistics and Philosophy 4(4):517–558.

Aho, Al V., and Jeffrey D. Ullman. 1972. Theory of parsing, translation and

compiling, vol. 1. Englewood Cliffs, New Jersey: Prentice-Hall, Inc.

Ait-Kaci, H. 1985. A new model of computation based on a calculus of type

subsumption. Ph.D. thesis, University of Pennsylvania, Philadelphia, PA.

Bach, Emmon W. 1980. In defense of passive. Linguistics and Philosophy

3(3):297–341.

Boyer, R. S., and J S. Moore. 1972. The sharing of structure in theorem-

proving programs. In Machine intelligence 7, 101–116. New York, New

York: John Wiley and Sons.

Bresnan, Joan, ed. 1982. The mental representation of grammatical relations.

Cambridge, Massachusetts: MIT Press.

Cardelli, L. 1984. A semantics of multiple inheritance. Tech. Rep., Bell Lab-

oratories, Murry Hill, NJ.

Carpenter, Bob. 1992. The logicof typed feature structures: With applications

to unification grammars, logic programs, and constraint resolution, vol. 32

of Cambridge Tracts in Theoretical Computer Science. New York, NY:

Cambridge University Press.

Clocksin, W. F., and C. S. Mellish. 1981. Programming in Prolog. Springer-

Verlag, Berlin.

Colmerauer, Alain. 1970. Les systèmes-q ou un formalisme pour analyser et

synthétiser des phrases sur ordinateur. Internal Publication 43, Département

d’Informatique, Université de Montreal, Canada.

———. 1978. Metamorphosis grammars. In Natural language communica-

tion with computers, ed. L. Bolc. Springer-Verlag, Berlin. First appeared

as ‘Les Grammaires de Metamorphose’, Groupe d’Intelligence Artificielle,

83

84 Bibliography

Université de Marseille II, November 1975.

———. 1982. Prolog II reference manual and theoretical model. Tech. Rep.,

Groupe Intelligence Artificielle—ERA CNRS 363.

Colmerauer, Alain, H. Kanoui, R. Pasero, and Phillipe Roussel. 1973. Un

systeme de comunication homme-machine en francais. Rapport, Groupe

d’Intelligence Artificielle, Université d’Aix-Marseille II.

Dahl, Veronica, and Harvey Abramson. 1984. On gapping grammars. In

Proceedings of the second international logic programming conference, ed.

Sten-Åke Tärnlund, 77–88. Uppsala, Sweden: Ord and Form.

Dahl, Veronica, and Michael C. McCord. 1983. Treating coordination in logic

grammars. American Journal of Computational Linguistics 9(2):69–91.

Dubinsky, Stanley, and Carol Rosen. 1983. A bibliography on relational gram-

mar through April 1983 with selected titles from lexical functional grammar.

Bloomington, Indiana: Indiana University Linguistics Club.

Evans, Roger, and Gerald Gazdar. 1984. The ProGram manual. Cognitive

Science Research Paper 35, University of Sussex, Sussex, England.

Flickinger, Dan, Carl Pollard, and Thomas Wasow. 1985. Structure-sharing in

lexical representation. In Proceedings of the 23rd annual meeting of the As-

sociation for Computational Linguistics, 262–267. Chicago, Illinois: Uni-

versity of Chicago.

Gawron, Jean Mark, Jonathon King, John Lamping, Egon Loebner, Eliza-

beth Anne Paulson, Geoffrey K. Pullum, Ivan A. Sag, and Thomas Wasow.

1982. Processing English with a generalized phrase structure grammar. In

Proceedings of the 20th annual meeting of the Association for Computa-

tional Linguistics, 74–81. Toronto, Ontario, Canada: University of Toronto.

Gazdar, Gerald. 1979. English as a context-free language. Cognitive Studies

Programme, School of Social Sciences, University of Sussex.

———. 1981. Unbounded dependencies and coordinate structure. Linguistic

Inquiry 12(2):155–184.

———. 1982. Phrase structure grammar, 131–186. Dordrecht, Holland: D.

Reidel.

———. 1984. Recent computer implementations of phrase structure grammar.

Computational Linguistics 10(3-4):212–214.

Gazdar, Gerald, Ewan Klein, and Geoffrey K. Pullum, eds. 1983. Order, con-

cord and constituency. Dordrecht, Holland: Foris Publications.

Bibliography 85

Gazdar, Gerald, Ewan Klein, Geoffrey K. Pullum, and Ivan A. Sag. 1985. Gen-

eralized phrase structure grammar. Blackwell Publishing, Oxford, England,

and Harvard University Press, Cambridge, Massachusetts.

Gazdar, Gerald, Geoffrey K. Pullum, and Ivan A. Sag. 1982. Auxiliaries and

related phenomena in a restrictive theory of grammar. Language 58(3):591–

638.

Johnson, Mark. 1988. Attribute-value logic and the theory of grammar, vol. 16

of CSLI Lecture Notes. Stanford, CA: Center for the Study of Language and

Information.

Kaplan, Ron, and Joan Bresnan. 1983. Lexical-functional grammar: A for-

mal system for grammatical representation. In The mental representation of

grammatical relations, ed. Joan Bresnan. Cambridge, Massachusetts: MIT

Press.

Kaplan, Ron M. 1973. A general syntactic processor. In Natural language

processing, ed. R. Rustin. New York, New York: Algorithmics Press.

Karttunen, Lauri, and Martin Kay. 1985. Structure sharing with binary trees.

In Proceedings of the 23rd annual meeting of the Association for Computa-

tional Linguistics. Chicago, Illinois: University of Chicago.

Kay, Martin. 1983. Unification grammar. Tech. Rep., Xerox Palo Alto Re-

search Center, Palo Alto, California.

———. 1985. Parsing in functional unification grammar. In Natural lan-

guage parsing: Psychological, computational and theoretical perspectives,

chap. 7, 251–278. Studies in Natural Language Processing, Cambridge,

England: Cambridge University Press.

Matsumoto, Yuji, Hozumi Tanaka, Hideki Hirakawa, Hideo Miyoshi, and

Hideki Yasukawa. 1983. BUP: A bottom-up parser embedded in Prolog.

New Generation Computing 1:145–158.

McCord, M. C. 1980. Slot grammars. American Journal of Computational

Linguistics 6(1):255–286.

Montague, Richard. 1974. The proper treatment of quantification in ordinary

English. In Formal philosophy, ed. Richmond H. Thomason, 188–221. New

Haven, Connecticut: Yale University Press.

Nelson, Greg, and Derek C. Oppen. 1978. Fast decision algorithms based on

congruence closure. Tech. Rep. AIM-309, Stanford Artificial Intelligence

Laboratory, Stanford University, Stanford, California. Also in Proceedings

86 Bibliography

of the 18th Annual Symposium on Foundations of Computer Science, Provi-

dence, Rhode Island, October, 1977.

Pereira, Fernando C. N. 1983. Logic for natural language analysis. Techni-

cal Note 275, Artificial Intelligence Center, SRI International, Menlo Park,

California.

———. 1985. A structure-sharing representation for unification-based gram-

mar formalisms. In Proceedings of the 23rd annual meeting of the As-

sociation for Computational Linguistics. Chicago, Illinois: University of

Chicago.

Pereira, Fernando C. N., and Stuart M. Shieber. 1984. The semantics of gram-

mar formalisms seen as computer languages. In Proceedings of the tenth

international conference on computational linguistics. Stanford University,

Stanford, California.

Pereira, Fernando C. N., and David H. D. Warren. 1980. Definite clause gram-

mars for language analysis—a survey of the formalism and a comparison

with augmented transition networks. Artificial Intelligence 13:231–278.

Pollard, Carl. 1984. Generalized phrase structure grammars, head grammars,

and natural languages. Ph.D. thesis, Stanford University, Stanford, Califor-

nia.

———. 1985a. Lecture notes on head-driven phrase-structure grammar. Cen-

ter for the Study of Language and Information, unpublished.

———. 1985b. Phrase structure grammar without metarules. In Proceed-

ings of the fourth west coast conference on formal linguistics. Los Angeles,

California: University of Southern California.

Pollard, Carl, and Lewis Creary. 1985. A computational semantics for natural

language. In Proceedings of the 23rd annual meeting of the Association for

Computational Linguistics. Chicago, Illinois: University of Chicago.

Proudian, Derek, and Carl Pollard. 1985. Parsing head-driven phrase structure

grammar. In Proceedings of the 23rd annual meeting of the Association for

Computational Linguistics. Chicago, Illinois: University of Chicago.

Reynolds, John C. 1985. Three approaches to type structure. To appear in the

Springer-Verlag Lecture Notes in Computer Science.

Robinson, Jane J. 1982. DIAGRAM: A grammar for dialogues. Communica-

tions of the ACM 25(1):27–47.

Rosenschein, Stanley J., and Stuart M. Shieber. 1982. Translating English into

logical form. In Proceedings of the 20th annual meeting of the Association

Bibliography 87

for Computational Linguistics, 1–8. Toronto, Ontario, Canada: University

of Toronto.

Roussel, Phillipe. 1975. Prolog: Manuel de référence et utilisation. Tech. Rep.,

Groupe d’Intelligence Artificielle, Université d’Aix-Marseille II, Marseille,

France.

Sag, Ivan A., Gerald Gazdar, Thomas Wasow, and Steven Weisler. 1984. Co-

ordination and how to distinguish categories. Report CSLI-86-3, Center

for the Study of Language and Information, Stanford, California. Also to

appear in Linguistics and Philosophy.

Sag, Ivan A., and Thomas Wasow. 1999. Syntactic theory: A formal introduc-

tion, vol. 92 of CSLI Lecture Notes. Center for the Study of Language and

Information, Stanford, CA: CSLI Publications.

Shieber, Stuart M. 1984. The design of a computer language for linguistic

information. In Proceedings of the tenth international conference on com-

putational linguistics. Stanford University, Stanford, California.

———. 1985a. Criteria for designing computer facilities for linguistic analy-

sis. Linguistics 23:189–211.

———. 1985b. Using restriction to extend parsing algorithms for complex-

feature-based formalisms. In Proceedings of the 22nd annual meeting of the

Association for Computational Linguistics. University of Chicago, Chicago,

Illinois.

Shieber, Stuart M., Lauri Karttunen, and Fernando C. N. Pereira. 1984. Notes

from the unification underground: A compilation of papers on unification-

based grammar formalisms. Tech. Rep. 327, Artificial Intelligence Center,

SRI International, Menlo Park, California.

Shieber, Stuart M., Hans Uszkoreit, Fernando C. N. Pereira, Jane J. Robinson,

and Mabry Tyson. 1983. The formalism and implementation of PATR-II. In

Research on interactive acquisition and use of knowledge. Menlo Park, Cal-

ifornia: Artificial Intelligence Center, SRI International. SRI Final Report

1894.

Thompson, H. 1981. Chart parsing and rule schemata in GPSG. In Proceed-

ings of the 19th annual meeting of the association for computational lin-

guistics, 167–172. Stanford University, Stanford, California: Association

for Computational Linguistics.

Warren, David H. D. 1983. Applied logic—its use and implementation as

a programming tool. Tech. Rep. 290, Artificial Intelligence Center, SRI

88 Bibliography

International, Menlo Park, California.

Woods, William. 1970. Transition network grammars for natural language

analysis. Communications of the ACM 13(10).

